Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Chromothripsis with at least 12 breaks at 1p36.33-p35.3 in a boy with multiple congenital anomalies (2015)

  • Authors:
  • USP affiliated authors: COSTA, ANTONIO RICHIERI DA - HRAC ; ROSENBERG, CARLA - IB
  • USP Schools: HRAC; IB
  • DOI: 10.1007/s00438-015-1072-0
  • Subjects: DOENÇAS GENÉTICAS; CROMOSSOMOS HUMANOS (ANOMALIAS); MALFORMAÇÕES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00438-015-1072-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00438-015-1072-0 (Fonte: Unpaywall API)

    Título do periódico: Molecular Genetics and Genomics

    ISSN: 1617-4615,1617-4623



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Molecular Genetics and Genomics

    ISSN: 1617-4615

    Citescore - 2017: 2.76

    SJR - 2017: 1.168

    SNIP - 2017: 0.813


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GAMBA, Bruno Faulin; RICHIERI-COSTA, Antônio; COSTA, Silvia; RIBEIRO-BICUDO, Lucilene Arilho. Chromothripsis with at least 12 breaks at 1p36.33-p35.3 in a boy with multiple congenital anomalies. Molecular Genetics and Genomics, Heidelberg, n. Ju 2015, p. on-line, 2015. Disponível em: < http://dx.doi.org/10.1007/s00438-015-1072-0 > DOI: 10.1007/s00438-015-1072-0.
    • APA

      Gamba, B. F., Richieri-Costa, A., Costa, S., & Ribeiro-Bicudo, L. A. (2015). Chromothripsis with at least 12 breaks at 1p36.33-p35.3 in a boy with multiple congenital anomalies. Molecular Genetics and Genomics, ( Ju 2015), on-line. doi:10.1007/s00438-015-1072-0
    • NLM

      Gamba BF, Richieri-Costa A, Costa S, Ribeiro-Bicudo LA. Chromothripsis with at least 12 breaks at 1p36.33-p35.3 in a boy with multiple congenital anomalies [Internet]. Molecular Genetics and Genomics. 2015 ;( Ju 2015): on-line.Available from: http://dx.doi.org/10.1007/s00438-015-1072-0
    • Vancouver

      Gamba BF, Richieri-Costa A, Costa S, Ribeiro-Bicudo LA. Chromothripsis with at least 12 breaks at 1p36.33-p35.3 in a boy with multiple congenital anomalies [Internet]. Molecular Genetics and Genomics. 2015 ;( Ju 2015): on-line.Available from: http://dx.doi.org/10.1007/s00438-015-1072-0

    Referências citadas na obra
    Allemeersch J, Vooren VS, Hannes F, De Moor B, Vermeesch JR, Moreau Y (2009) An experimental loop design for the detection of constitutional chromosomal aberrations by array CGH. BMC Bioinform 10(1):380
    Battaglia A (2011) Commentary: recognizing syndromes with overlapping features: how difficult is it? Considerations generated by the article on differential diagnosis of Smith–Magenis syndrome by Vieira and colleagues. Am J Med Genet Part A 155(5):986–987
    Battaglia A, Hoyme HE, Dallapiccola B et al (2008) Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics 121:404–410
    Chen E, Obolensky E, Rauen KA, Shaffer LG, Li X (2008) Cytogenetic and array CGH characterization of de novo 1p36 duplications and deletion in a patient with congenital cataracts, hearing loss, choanal atresia, and mental retardation. Am J Med Genet Part A 146A(21):2785–2790
    Chen JM, Férec C, Cooper DN (2012) Transient hypermutability, chromothripsis and replication-based mechanisms in the generation of concurrent clustered mutations. Mutat Res 750:52e9
    Gajecka M, Yu W, Ballif BC et al (2005) Delineation of mechanisms and regions of dosage imbalance in complex rearrangements of 1p36 leads to a putative gene for regulation of cranial suture closure. Eur J Hum Genet 13(2):139–149
    Gajecka M, Mackay KL, Shaffer LG (2007) Monosomy 1p36 deletion syndrome. Am J Med Genet C Semin Med Genet 145C(4):346–356
    Giannikou K, Fryssira H, Oikonomakis V, Syrmou A, Kosma K, Tzetis M, Kitsio-Tzeli S, Kanavakis E (2012) Further delineation of novel 1p36 rearrangements by array-CGH analysis: narrowing the breakpoints and clarifying the “extended” phenotype. Gene 506(2):360–368
    Heilstedt HA, Ballif BC, Howard LA, Lewis RA, Stal S, Kashork CD, Bacino CA, Shapira SK, Shaffer LG (2003) Physical map of 1p36, placement of breakpoints in monosomy 1p36, and clinical characterization of the syndrome. Am J Hum Genet 72(5):1200–1212
    Kloosterman WP, Guryev V, van Roosmalen M et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20(10):1916–1924
    Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146(6):889–903
    Macera MJ, Sobrino A, Levy B et al (2015) Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat Diagn 35(3):299–301
    Pai GS, Thomas GH, Mahoney W, Migeon BR (1980) Complex chromosome rearrangements: report of a new case and literature review. Clin Genet 18(6):436–444
    Pellestor F, Anahory T, Lefort G, Puechberty J, Liehr T, Hédon B, Sarda P (2011) Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update 17(4):476–494
    Plaisancié J, Kleinfinger P, Cances C, Bazin A, Julia S, Trost D, Lohmann L, Vigouroux A (2014) Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient. Eur J Med Genet 57(10):567–570
    Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40
    Vieira GH, Rodriguez JD, Boy R, de Paiva IS, DuPont BR, Moretti-Ferreira D, Srivastava AK (2011) Differential diagnosis of Smith–Magenis syndrome: 1p36 deletion syndrome. Am J Med Genet Part A 155:988–992
    Zhang F, Carvalho CM, Lupski JR (2009) Complex human chromosomal and genomic rearrangements. Trends Genet 25(7):298–307