Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

On strategies for building effective ensembles of relative clustering validity criteria (2016)

  • Authors:
  • USP affiliated authors: CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s10115-015-0851-6
  • Subjects: INTELIGÊNCIA ARTIFICIAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10115-015-0851-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10115-015-0851-6 (Fonte: Unpaywall API)

    Título do periódico: Knowledge and Information Systems

    ISSN: 0219-1377,0219-3116



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Knowledge and Information Systems

    ISSN: 0219-1377

    Citescore - 2017: 2.6

    SJR - 2017: 0.672

    SNIP - 2017: 1.496


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2700606-10PROD-2700606
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      JASKOWIAK, Pablo A; MOULAVI, Davoud; FURTADO, Antonio C. S; et al. On strategies for building effective ensembles of relative clustering validity criteria. Knowledge and Information Systems, London, Springer, v. 47, n. 2, p. 329-354, 2016. Disponível em: < http://dx.doi.org/10.1007/s10115-015-0851-6 > DOI: 10.1007/s10115-015-0851-6.
    • APA

      Jaskowiak, P. A., Moulavi, D., Furtado, A. C. S., Campello, R. J. G. B., Zimek, A., & Sander, J. (2016). On strategies for building effective ensembles of relative clustering validity criteria. Knowledge and Information Systems, 47( 2), 329-354. doi:10.1007/s10115-015-0851-6
    • NLM

      Jaskowiak PA, Moulavi D, Furtado ACS, Campello RJGB, Zimek A, Sander J. On strategies for building effective ensembles of relative clustering validity criteria [Internet]. Knowledge and Information Systems. 2016 ; 47( 2): 329-354.Available from: http://dx.doi.org/10.1007/s10115-015-0851-6
    • Vancouver

      Jaskowiak PA, Moulavi D, Furtado ACS, Campello RJGB, Zimek A, Sander J. On strategies for building effective ensembles of relative clustering validity criteria [Internet]. Knowledge and Information Systems. 2016 ; 47( 2): 329-354.Available from: http://dx.doi.org/10.1007/s10115-015-0851-6

    Referências citadas na obra
    Albalate A, Suendermann D (2009) A combination approach to cluster validation based on statistical quantiles. In: International joint conference on bioinformatics, systems biology and intelligent computing—IJCBS, pp 549–555
    Baya AE, Granitto PM (2013) How many clusters: a validation index for arbitrary-shaped clusters. IEEE/ACM Trans Comput Biol Bioinf 10(2):401–414
    Bezdek JC, Pal NR (1998) Some new indexes of cluster validity. IEEE Trans Syst Man Cybern B 28(3):301–315
    Bolshakova N, Azuaje F (2003) Cluster validation techniques for genome expression data. Sig Process 83(4):825–833
    Calinski RB, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27
    Cormack GV, Clarke CLA, Buettcher S (2009) Reciprocal rank fusion outperforms Condorcet and individual rank learning methods. In: Proceedings of the 32nd international ACM SIGIR conference on research and development in information retrieval, SIGIR ’09, pp 758–759
    Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1:224–227
    de Borda JC (1781) Mémoire sur les élections au scrutin. Histoire de l’Academie Royale des Sciences, pp 657–665
    Dudoit S, Fridlyand J (2002) A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol 3(7):0036.1–0036.21
    Dunn JC (1974) Well separated clusters and optimal fuzzy partitions. J Cybern 4:95–104
    Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proceedings of the 10th international conference on World Wide Web, pp 613–622
    Estivill-Castro V (2002) Why so many clustering algorithms: a position paper. ACM SIGKDD Explor 4(1):65–75
    Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701
    Färber I, Günnemann S, Kriegel HP, Kröger P, Müller E, Schubert E, Seidl T, Zimek A (2010) On using class-labels in evaluation of clusterings. In: MultiClust: 1st international workshop on discovering, summarizing and using multiple clusterings held in conjunction with KDD 2010, Washington, DC
    Gan G, Ma C, Wu J (2007) Data clustering: theory, algorithms, and applications. ASA-SIAM
    Geusebroek JM, Burghouts GJ, Smeulders AWM (2005) The Amsterdam library of object images. Int J Comput Vision 61(1):103–112
    Ghosh J, Acharya A (2011) Cluster ensembles. Wiley Interdiscip Rev Data Mining Knowl Discov 1(4):305–315
    Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17:107–145
    Hartigan JA (1975) Clustering algorithms. Wiley, New York
    Hill RS (1980) A stopping rule for partitioning dendrograms. Bot Gaz 141:321–324
    Horta D, Campello RJGB (2012) Automatic aspect discrimination in data clustering. Pattern Recogn 45(12):4370–4388
    Hruschka ER, Campello RJGB, Castro LN (2004) Improving the efficiency of a clustering genetic algorithm. In: Ibero-American conference on artificial intelligence—IBERAMIA, vol 3315, pp 861–870
    Hruschka ER, Campello RJGB, Castro LN (2006) Evolving clusters in gene-expression data. Inf Sci 176:1898–1927
    Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218
    Hubert LJ, Levin JR (1976) A general statistical framework for assessing categorical clustering in free recall. Psychol Bull 10:1072–1080
    Jaccard P (1901) Distribution de la florine alpine dans la bassin de dranses et dans quelques regiones voisines. Bull Soc Vaudoise Sci Nat 37:241–272
    Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recogn Lett 31:651–666
    Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, Englewood Cliffs
    Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31:264–323
    Kaufman L, Rousseeuw P (1990) Finding groups in data. Wiley, New York
    Klementiev A, Roth D, Small K (2007) An unsupervised learning algorithm for rank aggregation. In: Proceedings of the 18th European conference on machine learning (ECML), Warsaw, Poland, pp 616–623
    Kolde R, Laur S, Adler P, Vilo J (2012) Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28(4):573–580
    Kriegel HP, Kröger P, Sander J, Zimek A (2011a) Density-based clustering. Wiley Interdiscip Rev Data Mining Knowl Discov 1(3):231–240
    Kriegel HP, Kröger P, Schubert E, Zimek A (2011b) Interpreting and unifying outlier scores. In: Proceedings of the 11th SIAM international conference on data mining (SDM), Mesa, AZ, pp 13–24
    Kuncheva L, Whitaker C (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51(2):181–207
    Lazarevic A, Kumar V (2005) Feature bagging for outlier detection. In: Proceedings of the 11th ACM International conference on knowledge discovery and data mining (SIGKDD), Chicago, IL, pp 157–166
    Machado JB, Campello RJGB, Amaral WC (2007) Design of OBF-TS fuzzy models based on multiple clustering validity criteria. In: International conference on tools with artificial intelligence—ICTAI, pp 336–339
    Marquis de Condorcet MJANC (1785) Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. L’Imprimerie Royale, Paris
    Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654
    McQueen JB (1967) Some methods of classification and analysis of multivariate observations. 5th Berkeley symposium on mathematical statistics and probability, pp 281–297
    Milligan GW (1981) A monte carlo study of thirty internal criterion measures for cluster analysis. Psychometrika 46(2):187–199
    Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50(2):159–179
    Moulavi D, Jaskowiak PA, Campello RJGB, Zimek A, Sander J (2014) Density-based clustering validation. In: Proceedings of the 14th SIAM International conference on data mining (SDM), Philadelphia, PA, pp 839–847
    Naldi M, Carvalho ACPLF, Campello RJGB (2013) Cluster ensemble selection based on relative validity indexes. Data Min Knowl Disc 27(2):259–289
    Nemenyi PB (1963) Distribution-free multiple comparisons. PhD thesis, Princeton University
    Pakhira MK, Bandyopadhyay S, Maulik U (2004) Validity index for crisp and fuzzy clusters. Pattern Recogn 37:487–501
    Pihur V, Datta S, Datta S (2007) Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach. Bioinformatics 23(13):1607–1615
    Pihur V, Datta S, Datta S (2009) Rankaggreg, an R package for weighted rank aggregation. BMC Bioinf 10(1):62
    Polikar R (2012) Ensemble learning. In: Ma Y, Zhang C (eds) Ensemble machine learning. Springer, Berlin, pp 1–34
    Rabbany R, Takaffoli M, Fagnan J, Zaiane OR, Campello RJGB (2012) Relative validity criteria for community mining algorithms. IEEE/ACM international conference on advances in social networks analysis and mining—ASONAM, pp 258–265
    Ratkowsky DA, Lance GN (1978) A criterion for determining the number of groups in a classification. Aust Comput J 10:115–117
    Rokach L (2010) Ensemble-based classifiers. Artif Intell Rev 33:1–39
    Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65
    Schalekamp F, van Zuylen A (2009) Rank aggregation: together we’re strong. In: Proceedings of the workshop on algorithm engineering and experiments (ALENEX) SIAM, New York, NY, pp 38–51
    Schubert E, Wojdanowski R, Zimek A, Kriegel HP (2012) On evaluation of outlier rankings and outlier scores. In: Proceedings of the 12th SIAM international conference on data mining (SDM), Anaheim, CA, pp 1047–1058
    Sheng W, Swift S, Zhang L, Liu X (2005) A weighted sum validity function for clustering with a hybrid niching genetic algorithm. IEEE Trans Syst Man Cybern B 35(6):1156–1167
    Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 100(3/4):441–471
    Vendramin L, Campello RJGB, Hruschka ER (2009) On the comparison of relative clustering validity criteria. In: Proceedings of the 9th SIAM international conference on data mining (SDM). Sparks, NV, pp 733–744
    Vendramin L, Campello RJGB, Hruschka ER (2010) Relative clustering validity criteria: a comparative overview. Stat Anal Data Mining 3(4):209–335
    Vendramin L, Jaskowiak PA, Campello RJGB (2013) On the combination of relative clustering validity criteria. In: Proceedings of the 25th international conference on scientific and statistical database management (SSDBM), Baltimore, MD, pp 4:1–4:12
    Xu R, Wunsch DC II (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16:645–678
    Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10):977–987
    Zimek A, Campello RJGB, Sander J (2013) Ensembles for unsupervised outlier detection: challenges and research questions. ACM SIGKDD Explor 15(1):11–22
    Zimek A, Campello RJGB, Sander J (2014) Data perturbation for outlier detection ensembles. In: Proceedings of the 26th international conference on scientific and statistical database management (SSDBM), Aalborg, Denmark, pp 13:1–13:12