Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Stand volume models based on stable metrics as from multiple ALS acquisitions in Eucalyptus plantations (2015)

  • Authors:
  • USP affiliated authors: RODRIGUEZ, LUIZ CARLOS ESTRAVIZ - ESALQ
  • USP Schools: ESALQ
  • DOI: DOI: 10.1007/s13595-015-0457-x
  • Subjects: EUCALIPTO; DENDROMETRIA; AEROFOTOGRAMETRIA; LASER
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: DOI: 10.1007/s13595-015-0457-x (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: DOI: 10.1007/s13595-015-0457-x (Fonte: Unpaywall API)

    Título do periódico: Cytotechnology

    ISSN: 0920-9069,1573-0778

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Annals of Forest Science

    ISSN: 1286-4560

    Citescore - 2017: 2.42

    SJR - 2017: 0.986

    SNIP - 2017: 1.14


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GÖRGENS, Eric Bastos; PACKALEN, Petteri; SILVA, André Gracioso Peres da; et al. Stand volume models based on stable metrics as from multiple ALS acquisitions in Eucalyptus plantations. Annals of Forest Science, Les Ulis, v. 72, n. 4, p. 489-498, 2015. Disponível em: < http://link.springer.com/article/10.1007/s13595-015-0457-x/fulltext.html > DOI: DOI: 10.1007/s13595-015-0457-x.
    • APA

      Görgens, E. B., Packalen, P., Silva, A. G. P. da, Alvares, C. A., Campoe, O. C., Stape, J. L., & Rodriguez, L. C. E. (2015). Stand volume models based on stable metrics as from multiple ALS acquisitions in Eucalyptus plantations. Annals of Forest Science, 72( 4), 489-498. doi:DOI: 10.1007/s13595-015-0457-x
    • NLM

      Görgens EB, Packalen P, Silva AGP da, Alvares CA, Campoe OC, Stape JL, Rodriguez LCE. Stand volume models based on stable metrics as from multiple ALS acquisitions in Eucalyptus plantations [Internet]. Annals of Forest Science. 2015 ; 72( 4): 489-498.Available from: http://link.springer.com/article/10.1007/s13595-015-0457-x/fulltext.html
    • Vancouver

      Görgens EB, Packalen P, Silva AGP da, Alvares CA, Campoe OC, Stape JL, Rodriguez LCE. Stand volume models based on stable metrics as from multiple ALS acquisitions in Eucalyptus plantations [Internet]. Annals of Forest Science. 2015 ; 72( 4): 489-498.Available from: http://link.springer.com/article/10.1007/s13595-015-0457-x/fulltext.html

    Referências citadas na obra
    Alvares CA, Stape JL, Sentelhas PC, de Moraes Goncalves JL, Sparovek G (2013) Koppen’s climate classification map for Brazil. Meteorol Z 22:711–728
    Baltsavias EP (1999a) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54:199–214
    Baltsavias EP (1999b) Airborne laser scanning: existing systems and firms and other resources. ISPRS J Photogramm Remote Sens 54:164–198
    Bater CW, Wulder MA, Coops NC, Nelson RF, Hilker T, Naesset E (2011) Stability of sample-based scanning-LiDAR-derived vegetation metrics for forest monitoring. [article]. IEEE Trans Geosci Remote Sens 49:2385–2392
    Ben-Akiva, M, Bolduc, D (1987) Approaches to model transferability and updating: the combined transfer estimator (No. 1139)
    Campoe OC, Stape JL, Laclau J-P, Marsden C, Nouvellon Y (2012) Stand-level patterns of carbon fluxes and partitioning in a Eucalyptus grandis plantation across a gradient of productivity, in São Paulo State, Brazil. Tree Physiol 32:696–706
    Chasmer L, Hopkinson C, Treitz P (2006) Investigating laser pulse penetration through a conifer canopy by integrating airborne and terrestrial lidar. Can J Remote Sens 32:116–125
    Dalponte M, Coops NC, Bruzzone L, Gianelle D (2009) Analysis on the use of multiple returns LiDAR data for the estimation of tree stems volume. IEEE J Sel Top Appl EarthObs Remote Sens 2:310–318
    Foody GM, Boyd DS, Cutler MEJ (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens Environ 85:463–474
    Gonzalez-Ferreiro E, Dieguez-Aranda U, Miranda D (2012) Estimation of stand variables in Pinusradiata D. Don plantations using different LiDAR pulse densities. Forestry 85:281–292
    Goodwin NR, Coops NC, Culvenor DS (2006) Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sens Environ 103:140–152
    Hopkinson C (2007) The influence of flying altitude, beam divergence, and pulse repetition frequency on laser pulse return intensity and canopy frequency distribution. Can J Remote Sens 33:312–324
    Holmgren J, Nilsson M, Olsson H (2003) Estimation of tree height and stem volume on plots using airborne laser scanning. For Sci 49:419–428
    Kane VR, McGaughey RJ, Bakker JD, Gersonde RF, Lutz JA, Franklin JF (2010) Comparisons between field-and LiDAR-based measures of stand structural complexity. Can J For Res 40:761–773
    Kraus K, Pfeifer N (2001) Advanced DTM generation from LIDAR data. Int Arch Photogramm Remote Sens Spat Inf Sci 34:23–30
    Lefsky MA, Cohen WB, Harding DJ, Parker GG, Acker SA, Gower ST (2002) Lidar remote sensing of above‐ground biomass in three biomes. Glob Ecol Biogeogr 11:393–399
    Lefsky MA, Hudak AT, Cohen WB, Acker SA (2005) Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest. Remote Sens Environ 95:532–548
    Lim K, Hopkinson C, Treitz P (2008) Examining the effects of sampling point densities on laser canopy height and density metrics. For Chron 84:876–885
    Magnussen S, Boudewyn P (1998) Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can J For Res 28:1016–1031
    Magnusson M, Fransson JES, Holmgren J (2007) Effects on estimation accuracy of forest variables using different pulse density of laser data. For Sci 53:619–626
    McGaughey, RJ (2013) FUSION/LDV: software for LiDAR Data Analysis and Visualization. USDA/Forest Service
    Montaghi A, Corona P, Dalponte M, Gianelle D, Chirici G, Olsson H (2013) Airborne laser scanning of forest resources: an overview of research in Italy as a commentary case study. Int J Appl Earth Obs Geoinformation 23:288–300
    Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99
    Næsset E (2004) Accuracy of forest inventory using airborne laser scanning: evaluating the first Nordic full-scale operational project. Scand J For Res 19:554–557
    Nelson R, Krabill W, Maclean G (1984) Determining forest canopy characteristics using airborne laser data. Remote Sens Environ 15:201–212
    Nelson R, Krabill W, Tonelli J (1988) Estimating forest biomass and volume using airborne laser data. Remote Sens Environ 24:247–267
    Næsset, E (2009) Effects of different sensors, flying altitudes, and pulse repetition frequencies on forest canopy metrics and biophysical stand properties derived from small-footprint airborne laser data. Remote Sens Environ 113(1):148–149
    Riaño D, Valladares F, Condés S, Chuvieco E (2004) Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agric For Meteorol 124:269–275
    Rödder D, Lötters S (2010) Explanative power of variables used in species distribution modelling: an issue of general model transferability or niche shift in the invasive Greenhouse frog (Eleutherodactylusplanirostris). Naturwissenschaften 97:781–796
    Stephens PR, Kimberley MO, Beets PN, Paul TSH, Searles N, Bell A et al (2012) Airborne scanning LiDAR in a double sampling forest carbon inventory. Remote Sens Environ 117:348–357
    Thomas V, Treitz P, McCaughey JH, Morrison I (2006) Mapping stand-level forest biophysical variables for a mixed wood boreal forest using lidar: an examination of scanning density. Can J For Res-Rev Can Rech For 36:34–47
    Zlinszky A, Ressl C, Timár G, Weber R, Székely B, Briese C, Pfeifer N (2013) A proof of concept: airborne LIDAR–measured ellipsoidal heights of a lake surface correspond to a local geoid model. J Conf Abstr EUG 15:10280