Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A novel member of GH16 family derived from sugarcane soil metagenome (2015)

  • Authors:
  • USP affiliated authors: POLIKARPOV, IGOR - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s12010-015-1743-7
  • Subjects: CANA-DE-AÇÚCAR; ENZIMAS HIDROLÍTICAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12010-015-1743-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s12010-015-1743-7 (Fonte: Unpaywall API)

    Título do periódico: Applied Biochemistry and Biotechnology

    ISSN: 0273-2289,1559-0291



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Applied Biochemistry and Biotechnology

    ISSN: 0273-2289

    Citescore - 2017: 2.02

    SJR - 2017: 0.571

    SNIP - 2017: 0.8


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89023828PROD023828
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ALVAREZ, Thabata Maria; LIBERATO, Marcelo Vizoná; CAIRO, João Paulo L. Franco; et al. A novel member of GH16 family derived from sugarcane soil metagenome. Applied Biochemistry and Biotechnology, New York, Humana Press, v. 177, n. 2, p. 304-317, 2015. Disponível em: < http://dx.doi.org/10.1007/s12010-015-1743-7 > DOI: 10.1007/s12010-015-1743-7.
    • APA

      Alvarez, T. M., Liberato, M. V., Cairo, J. P. L. F., Paixão, D. A. A., Campos, B. M., Ferreira, M. R., et al. (2015). A novel member of GH16 family derived from sugarcane soil metagenome. Applied Biochemistry and Biotechnology, 177( 2), 304-317. doi:10.1007/s12010-015-1743-7
    • NLM

      Alvarez TM, Liberato MV, Cairo JPLF, Paixão DAA, Campos BM, Ferreira MR, Almeida RF, Pereira IO, Bernardes A, Ematsu GCG, Chinaglia M, Polikarpov I, Oliveira Neto M de, Squina FM. A novel member of GH16 family derived from sugarcane soil metagenome [Internet]. Applied Biochemistry and Biotechnology. 2015 ; 177( 2): 304-317.Available from: http://dx.doi.org/10.1007/s12010-015-1743-7
    • Vancouver

      Alvarez TM, Liberato MV, Cairo JPLF, Paixão DAA, Campos BM, Ferreira MR, Almeida RF, Pereira IO, Bernardes A, Ematsu GCG, Chinaglia M, Polikarpov I, Oliveira Neto M de, Squina FM. A novel member of GH16 family derived from sugarcane soil metagenome [Internet]. Applied Biochemistry and Biotechnology. 2015 ; 177( 2): 304-317.Available from: http://dx.doi.org/10.1007/s12010-015-1743-7

    Referências citadas na obra
    Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.
    Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews, 68, 669–685.
    Schloss, P. D., & Handelsman, J. (2003). Biotechnological prospects from metagenomics. Current Opinion in Biotechnology, 14, 303–310.
    Kallifidas, D., Kang, H.-S., & Brady, S. F. (2012). Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. Journal of the American Chemical Society, 134, 19552–19555.
    MacNeil, I. A., Tiong, C. L., Minor, C., August, P. R., Grossman, T. H., Loiacono, K. A., Lynch, B. A., Phillips, T., Narula, S., Sundaramoorthi, R., Tyler, A., Aldredge, T., Long, H., Gilman, M., Holt, D., & Osburne, M. S. (2001). Expression and isolation of antimicrobial small molecules from soil DNA libraries. Journal of Molecular Microbiology and Biotechnology, 3, 301–308.
    Wang, G. Y., Graziani, E., Waters, B., Pan, W., Li, X., McDermott, J., Meurer, G., Saxena, G., Andersen, R. J., & Davies, J. (2000). Novel natural products from soil DNA libraries in a streptomycete host. Organic Letters, 2, 2401–2404.
    Yun, J., Kang, S., Park, S., Yoon, H., Kim, M.-J., Heu, S., & Ryu, S. (2004). Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Applied and Environmental Microbiology, 70, 7229–7235.
    Jiang, C., Li, S.-X., Luo, F.-F., Jin, K., Wang, Q., Hao, Z.-Y., Wu, L.-L., Zhao, G.-C., Ma, G.-F., Shen, P.-H., Tang, X.-L., & Wu, B. (2011). Biochemical characterization of two novel β-glucosidase genes by metagenome expression cloning. Bioresource Technology, 102, 3272–3278.
    Alvarez, T. M., Goldbeck, R., dos Santos, C. R., Paixão, D. A. A., Gonçalves, T. A., Franco Cairo, J. P. L., Almeida, R. F., de Oliveira Pereira, I., Jackson, G., Cota, J., Büchli, F., Citadini, A. P., Ruller, R., Polo, C. C., de Oliveira Neto, M., Murakami, M. T., & Squina, F. M. (2013). Development and biotechnological application of a novel endoxylanase family GH10 identified from sugarcane soil metagenome. PLoS One, 8, e70014.
    Liu, J., Liu, W.-D., Zhao, X.-L., Shen, W.-J., Cao, H., & Cui, Z.-L. (2011). Cloning and functional characterization of a novel endo-β-1,4-glucanase gene from a soil-derived metagenomic library. Applied Microbiology and Biotechnology, 89, 1083–1092.
    Brennan, Y., Callen, W. N., Christoffersen, L., Dupree, P., Goubet, F., Healey, S., Hernández, M., Keller, M., Li, K., Palackal, N., Sittenfeld, A., Tamayo, G., Wells, S., Hazlewood, G. P., Mathur, E. J., Short, J. M., Robertson, D. E., & Steer, B. A. (2004). Unusual microbial xylanases from insect guts. Applied and Environmental Microbiology, 70, 3609–3617.
    Alvarez, T. M., Paiva, J. H., Ruiz, D. M., Cairo, J. P. L. F., Pereira, I. O., Paixão, D. A., de Almeida, R. F., Tonoli, C. C., Ruller, R., Santos, C. R., Squina, F. M., & Murakami, M. T. (2013). Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One, 8, e83635.
    Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemistry Journal, 280, 309–316.
    Mamo, G., Faryar, R., & Karlsson, E. N. (2013). Microbial glycoside hydrolases for biomass utilization in biofuels applications. In V. K. Gupta & M. G. Tuhoy (Eds.), Biofuel technologies: Recent developments (pp. 171–188). Heidelberg: Springer.
    Juturu, V., & Wu, J. C. (2012). Microbial xylanases: engineering, production and industrial applications. Biotechnology Advances, 30, 1219–1227.
    Zheng, H., Guo, B., Chen, X.-L., Fan, S.-J., & Zhang, Y.-Z. (2011). Improvement of the quality of wheat bread by addition of glycoside hydrolase family 10 xylanases. Applied Microbiology and Biotechnology, 90, 509–515.
    Peberdy, J. F. (1990). Fungal cell walls. A review. In P. J. Kuhn, A. P. J. Trinci, M. J. Jung, & M. W. Goosey (Eds.), Biochemistry of cell walls and membranes in fungi (pp. 5–30). New York: Springer.
    Burton, R. A., & Fincher, G. B. (2009). (1,3;1,4)-beta-D-glucans in cell walls of the poaceae, lower plants, and fungi: a tale of two linkages. Molecular Plant, 2, 873–882.
    Olafsdottir, E. S., & Ingólfsdottir, K. (2001). Polysaccharides from lichens: structural characteristics and biological activity. Planta Medica, 67, 199–208.
    Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37, 4311–4330.
    Gueguen, Y., Voorhorst, W. G., van der Oost, J., & de Vos, W. M. (1997). Molecular and biochemical characterization of an endo-beta-1,3-glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 272, 31258–31264.
    Kawai, R., Igarashi, K., Yoshida, M., Kitaoka, M., & Samejima, M. (2006). Hydrolysis of beta-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-beta-glucanase from the basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 71, 898–906.
    Iakiviak, M., Mackie, R. I., & Cann, I. K. (2011). Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8. Applied and Environmental Microbiology, 77, 7541–7550.
    Masuda, S., Endo, K., Koizumi, N., Hayami, T., Fukazawa, T., Yatsunami, R., Fukui, T., & Nakamura, S. (2006). Molecular identification of a novel beta-1,3-glucanase from alkaliphilic Nocardiopsis sp. strain F96. Extremophiles, 10, 251–255.
    Strohmeier, M., Hrmova, M., Fischer, M., Harvey, A. J., Fincher, G. B., & Pleiss, J. (2004). Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the poaceae. Protein Science, 13, 3200–3213.
    Parrish, F. W., Perlin, A. S., & Resse, E. T. (1960). Selective enzymolysis of poly-J3-D-glucans, and the structure of the polymers. Canadian Journal of Chemistry, 38, 2094–2104.
    Pang, Z., Otaka, K., Maoka, T., Hidaka, K., Ishijima, S., Oda, M., & Ohnishi, M. (2005). Structure of beta-glucan oligomer from laminarin and its effect on human monocytes to inhibit the proliferation of U937 cells. Bioscience Biotechnology and Biochemistry, 69, 553–558.
    Zhan, X.-B., Lin, C.-C., & Zhang, H.-T. (2012). Recent advances in curdlan biosynthesis, biotechnological production, and applications. Applied Microbiology and Biotechnology, 93, 525–531.
    Bamforth, C. W. (2009). Current perspectives on the role of enzymes in brewing. Journal of Cereal Science, 50, 353–357.
    Humbert-Goffard, A., Saucier, C., Moine-Ledoux, V., Canal-Llaubères, R.-M., Dubourdieu, D., & Glories, Y. (2004). An assay for glucanase activity in wine. Enzyme and Microbial Technology, 34, 537–543.
    Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8, 785–786.
    Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tool on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Totowa: Humana.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.
    Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.
    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42, D490–D495.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.
    Evangelista, R. A., Liu, M.-S., & Chen, F.-T. A. (1995). Characterization of 9-aminopyrene-1,4,6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection. Analytical Chemistry, 67, 2239–2245.
    Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Research, 14, 235–248.
    Guinier, A., Fournet, G., Walker, C., & Yudowitch, K. (1955). Small angle scattering of X-rays. New York: Wiley.
    Svergun, D. I. (1992). Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 25, 495–503.
    Fischer, H., de Oliveira Neto, M., Napolitano, H. B., Polikarpov, I., & Craievich, A. F. (2009). Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. Journal of Applied Crystallography, 43, 101–109.
    Svergun, D. I., Petoukhov, M. V., & Koch, M. H. (2001). Determination of domain structure of proteins from X-ray solution scattering. Biophysical Journal, 80, 2946–2953.
    Volkov, V. V., & Svergun, D. I. (2003). Uniqueness of ab initio shape determination in small-angle scattering. Journal of Applied Crystallography, 36, 860–864.
    Svergun, D., Barberato, C., & Koch, M. H. J. (1995). CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. Journal of Applied Crystallography, 28, 768–773.
    Bleicher, L., Prates, E. T., Gomes, T. C. F., Silveira, R. L., Nascimento, A. S., Rojas, A. L., Golubev, A., Martínez, L., Skaf, M. S., & Polikarpov, I. (2011). Molecular basis of the thermostability and thermophilicity of laminarinases: X-ray structure of the hyperthermostable laminarinase from Rhodothermus marinus and molecular dynamics simulations. Journal of Physical Chemistry B, 115, 7940–7949.
    Pang, Z., Otaka, K., Suzuki, Y., Goto, K., & Ohnishi, M. (2004). Purification and characterization of an endo-1,3-β-glucanase from Arthrobacter sp. Journal of Biological Macromolecules, 4, 57–66.
    Cota, J., Alvarez, T. M., Citadini, A. P., Santos, C. R., de Oliveira Neto, M., Oliveira, R. R., Pastore, G. M., Ruller, R., Prade, R. A., Murakami, M. T., & Squina, F. M. (2011). Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-β-1,3-glucanase from Thermotoga petrophila. Biochemical and Biophysical Research Communications, 406, 590–594.
    Cheng, Y.-M., Hong, T.-Y., Liu, C.-C., & Meng, M. (2009). Cloning and functional characterization of a complex endo-beta-1,3-glucanase from Paenibacillus sp. Applied Microbiology and Biotechnology, 81, 1051–1061.
    Hong, T. Y., Cheng, C. W., Huang, J. W., & Meng, M. (2002). Isolation and biochemical characterization of an endo-1,3-beta-glucanase from Streptomyces sioyaensis containing a C-terminal family 6 carbohydrate-binding module that binds to 1,3-beta-glucan. Microbiology, 148, 1151–1159.
    Bacic, A., Fincher, G. B., & Stone, B. A. (2009). Chemistry, biochemistry, and biology of 1-3 beta glucans and related polysaccharides. St. Louis: Elsevier.
    Wood, P. J., Weisz, J., & Blackwell, B. A. (1994). Structural studies of (1-3)(1-4)-beta-D-glucans by 13C-nuclear magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chemistry, 7, 301–307.
    Cheng, R., Chen, J., Yu, X., Wang, Y., Wang, S., & Zhang, J. (2013). Recombinant production and characterization of full-length and truncated β-1,3-glucanase PglA from Paenibacillus sp. S09. BMC Biotechnology, 13, 105.
    Krah, M., Misselwitz, R., Politz, O., Thomsen, K. K., Welfle, H., & Borriss, R. (1998). The laminarinase from thermophilic eubacterium Rhodothermus marinus-conformation, stability, and identification of active site carboxylic residues by site-direct mutagenesis. European Journal of Biochemistry, 257, 101–111.