Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The flattenings of the layers of rotating planets and satellites deformed by a tidal potential (2015)

  • Authors:
  • USP affiliated authors: MELLO, SYLVIO FERRAZ DE - IAG
  • USP Schools: IAG
  • DOI: 10.1007/s10569-015-9615-6
  • Subjects: MARÉ; PLANETAS; SATÉLITES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10569-015-9615-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s10569-015-9615-6 (Fonte: Unpaywall API)

    Título do periódico: Celestial Mechanics and Dynamical Astronomy

    ISSN: 0923-2958,1572-9478

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:
    Informações sobre o Citescore
  • Título: Celestial Mechanics and Dynamical Astronomy

    ISSN: 0923-2958

    Citescore - 2017: 2.03

    SJR - 2017: 1.092

    SNIP - 2017: 1.52


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FOLONIER, Hugo A; FERRAZ-MELLO, Sylvio; KHOLSHEVNIKOV, Konstantin V. The flattenings of the layers of rotating planets and satellites deformed by a tidal potential. Celestial Mechanics & Dynamical Astronomy, Dordrecht, v. 122, p. 183-198, 2015. Disponível em: < http://dx.doi.org/10.1007/s10569-015-9615-6 > DOI: 10.1007/s10569-015-9615-6.
    • APA

      Folonier, H. A., Ferraz-Mello, S., & Kholshevnikov, K. V. (2015). The flattenings of the layers of rotating planets and satellites deformed by a tidal potential. Celestial Mechanics & Dynamical Astronomy, 122, 183-198. doi:10.1007/s10569-015-9615-6
    • NLM

      Folonier HA, Ferraz-Mello S, Kholshevnikov KV. The flattenings of the layers of rotating planets and satellites deformed by a tidal potential [Internet]. Celestial Mechanics & Dynamical Astronomy. 2015 ; 122 183-198.Available from: http://dx.doi.org/10.1007/s10569-015-9615-6
    • Vancouver

      Folonier HA, Ferraz-Mello S, Kholshevnikov KV. The flattenings of the layers of rotating planets and satellites deformed by a tidal potential [Internet]. Celestial Mechanics & Dynamical Astronomy. 2015 ; 122 183-198.Available from: http://dx.doi.org/10.1007/s10569-015-9615-6

    Referências citadas na obra
    Bizyaev, I.A., Borisov, A.V., Mamaev, I.S.: Figures of equilibrium of an inhomogeneous self-gravitating fluid. Celest. Mech. Dyn. Astron. 122, 1–26 (2015)
    Borisov, A.V., Mamaev, I.S., Kilin, A.A.: The Hamiltonian dynamics of self-gravitating liquid and gas ellipsoids. Regul. Chaotic Dyn. 14, 179–217 (2009)
    Bullen, K.E.: The Earth’s Density. Chapman and Hall, London (1975)
    Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. University of Chicago Press, Chicago (1939)
    Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven (1969)
    Clairaut, A.C.: Théorie de la Figure de la Terre, Tirée des Principes de l’Hydrostratique. Paris Courcier, Paris (1743)
    Collins, G.W.: The Fundamentals of Stellar Astrophysics. W.H. Freeman and Co., New York (1989)
    Correia, A., Rodríguez, A.: On the equilibrium figure of close-in planets and satellites. Astrophys. J. 767, 128–132 (2013)
    Darwin, G.H.: On the secular change in the elements of the orbit of a satellite revolving about a tidally distorted planet. Philos. Trans. 171, 713–891 (1880). (repr. Scientific Papers, Cambridge, Vol. II, 1908)
    Esteban, E.P., Vazquez, S.: Rotating stratified heterogeneous oblate spheroid in Newtonian physics. Celest. Mech. Dyn. Astron. 81, 299–312 (2001)
    Ferraz-Mello, S., Rodríguez, A., Hussmann, H.: Tidal frition in close-in satellites and exoplanets. The Darwin theory re-visited. Celest. Mech. Dyn. Astron. 101, 171–201 (2008). Errata: 104, 319–320
    Ferraz-Mello, S.: Tidal synchronization of close-in satellites and exoplanets. A rheophysical approach. Celest. Mech. Dyn. Astron. 116, 109–140 (2013)
    Hubbard, W.B.: Concentric Maclaurin spheroid models of rotating liquid planets. Astrophys. J. 768, 43 (2013)
    Jardetzky, W.S.: Theories of Figures of Celestial Bodies. Interscience, New York (1958). (repr. Dover, Mineola, NY, 2005)
    Jeans, J.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1929). (repr. Dover, New York, 1961)
    Jeffreys, H.S.: The figures of rotating planets. Mon. Not. R. Astron. Soc. 113, 97 (1953)
    Kong, D., Zhang, K., Schubert, G.: Shapes of two-layer models of rotating planets. J. Geophys. Res. 115, 12003 (2010)
    Leconte, J., Lai, D., Chabrier, G.: Distorted, non-spherical transiting planets: impact on the transit depth and on the radius determination. Astron. Astrophys. 528, A41 (2011). Erratum: Astronomy & Astrophysics, 536, C1
    Lyapounov, A.: Sur certaines séries de figures d’equilibre d’un liquide héterogène en rotation. Acad. Sci. URSS, Part I (1925)
    Lyapounov, A.: Sur certaines séries de figures d’equilibre d’un liquide héterogène en rotation. Acad. Sci. URSS, Part II (1927)
    Montalvo, D., Martínez, F.J., Cisneros, J.: On equilibrium figures of ideal fluids in the form of confocal spheroids rotating with common and different angular velocities. Rev. Mexicana Astron. Astrof. 5, 293–300 (1983)
    Munk, W.H., MacDonald, G.J.F.: The Rotation of the Earth: A Geophysical Discussion. Cambridge University Press, Cambridge (1960)
    Poincaré, H.: Figures d’equilibre d’una masse fluide (Leçons professées à la Sorbenne en 1900) Gauthier-Villars, Paris (1902)
    Tisserand, F.: Traité de Mécanique Céleste, Tome II. Gauthier-Villars, Paris (1891)
    Tricarico, P.: Multi-layer hidrostatic equilibrium of planets and synchronous Moons: Theory and application to Ceres and Solar System Moons. Astrophys. J. 782, 12 (2014)
    Van Hoolst, T., Rambaux, N., Karatekin, Ö., Dehant, V., Rivoldini, A.: The librations, shape, and icy shell of Europa. Icarus 195, 386–399 (2008)
    Wavre, R.: Figures planétaries et Géodesie. Gauthier-Villars et cie, Paris (1932)
    Zharkov, V.N., Trubitsyn, V.P.: Figures planétaries et Géodesie. Astronomy and Astrophysics Series. Pachart, Tucson (1978)