Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A multiobjective approach to the genetic code adaptability problem (2015)

  • Authors:
  • USP affiliated authors: TINÓS, RENATO - FFCLRP
  • USP Schools: FFCLRP
  • DOI: 10.1186/s12859-015-0480-9
  • Subjects: ALGORITMOS; AMINOÁCIDOS (GENÉTICA); EVOLUÇÃO MOLECULAR; MUTAÇÃO GENÉTICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1186/s12859-015-0480-9 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1186/s12859-015-0480-9 (Fonte: Unpaywall API)

    Título do periódico: BMC Bioinformatics

    ISSN: 1471-2105

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: BMC Bioinformatics

    ISSN: 1471-2105

    Citescore - 2017: 2.49

    SJR - 2017: 1.479

    SNIP - 2017: 0.878


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP2722528pcd 2722528 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      OLIVEIRA, Lariza Laura de; OLIVEIRA, Paulo Sérgio Lopes de; TINÓS, Renato. A multiobjective approach to the genetic code adaptability problem. BMC Bioinformatics, London, v. 16, 2015. Disponível em: < http://dx.doi.org/10.1186/s12859-015-0480-9 > DOI: 10.1186/s12859-015-0480-9.
    • APA

      Oliveira, L. L. de, Oliveira, P. S. L. de, & Tinós, R. (2015). A multiobjective approach to the genetic code adaptability problem. BMC Bioinformatics, 16. doi:10.1186/s12859-015-0480-9
    • NLM

      Oliveira LL de, Oliveira PSL de, Tinós R. A multiobjective approach to the genetic code adaptability problem [Internet]. BMC Bioinformatics. 2015 ; 16Available from: http://dx.doi.org/10.1186/s12859-015-0480-9
    • Vancouver

      Oliveira LL de, Oliveira PSL de, Tinós R. A multiobjective approach to the genetic code adaptability problem [Internet]. BMC Bioinformatics. 2015 ; 16Available from: http://dx.doi.org/10.1186/s12859-015-0480-9

    Referências citadas na obra
    Lehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry. New York, USA: W. H. Freeman; 2005.
    Woese CR. On the evolution of the genetic code. Proc Natl Acad Sci U S A. 1965; 54(6):1546–52.
    Crick FH. The origin of the genetic code. J Mol Biol. 1968; 38(3):367–79.
    Di Giulio M. The extension reached by the minimization of the polarity distances during the evolution of the genetic code. J Mol Evol. 1989; 29(4):288–93.
    Freeland SJ, Hurst LD. The genetic code is one in a million. J Mol Evol. 1998; 47(3):238–48.
    Parker J. Errors and alternatives in reading the universal genetic code. Microbiol Mol Biol Rev. 1989; 53(3):273.
    Di Giulio M. The origin of the genetic code: theories and their relationships, a review. Biosystems. 2005; 80(2):175–184.
    Morgens DW, Cavalcanti AR. An alternative look at code evolution: Using non-canonical codes to evaluate adaptive and historic models for the origin of the genetic code. J Mol Evol. 2013; 76:71–80.
    Salinas DG, Gallardo MO, Osorio MI. Probable relationship between partitions of the set of codons and the origin of the genetic code. Biosystems. 2014; 117:77–81.
    Di Giulio M. The origin of the genetic code in the ocean abysses: new comparisons confirm old observations. J Theor Biol. 2013; 333:109–16.
    Zhang Z, Yu J. Does the genetic code have a eukaryotic origin?. Genomics Proteomics Bioinformatics. 2013; 11:41–55.
    Hornos JEM, Hornos YM. Algebraic model for the evolution of the genetic code. Phys Rev Lett. 1993; 71(26):4401–04.
    Maddox J. The genetic code by numbers. Nature. 1994; 367(6459):111.
    Wong JTF. A co-evolution theory of the genetic code. Proc Natl Acad Sci U S A. 1909; 72(5).
    Haig D, Hurst LD. A quantitative measure of error minimization in the genetic code. J Mol Evol. 1991; 33(5):412–7.
    Knight RD, Freeland SJ, Landweber LF. Selection, history and chemistry the three faces of the genetic code. Trends Biochem Sci. 1999; 24(6):241–7.
    Schoenauer S, Clote P. How optimal is the genetic code In: Frishman D, Mewes H, editors. Computer Science and Biology, Proceedings of the German Conference on Bioinformatics (GCB’97): 1997. p. 65–7.
    Santos J, Monteagudo A. Study of the genetic code adaptability by means of a genetic algorithm. J Theor Biol. 2010; 264(3):854–65.
    Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol Comput IEEE Trans. 2002; 6(2):182–97.
    Santos J, Monteagudo A. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments. BMC Bioinformatics. 2011; 12:56.
    Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q. Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol Comput. 2011; 1:32–49.
    El-Ghazali T. Metaheuristics: from design to implementation. Chichester: Jonh Wiley and Sons Inc; 2009.
    Coello CAC. List of references on evolutionary multiobjective optimization. 1999. http://www.lania.mx/~ccoello/EMOO/EMOObib.html .
    Konak A, Coit D, Smith A. Multi-objective optimization using genetic algorithms: A tutorial. Reliability Eng Syst Safety. 2006; 91(9):992–1007.
    Di Giulio M, Capobianco M, Medugno M. On the optimization of the physicochemical distances between amino acids in the evolution of the genetic code. J Theor Biol. 1994; 168:43–51.
    Goldman N. Further results on error minimization in the genetic code. J Mol Evol. 1993; 37(6):662–4.
    Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982; 157:105–32.
    Alff-Steinberger C. The genetic code and error transmission. Proc Natl Acad Sci. 1969; 64(2):584–91.
    de Pouplana LR. The genetic code and the origin of life. Berlin: Springer; 2005.
    de Oliveira LL, Tinós R. Entropy-based evaluation function in a multi-objective approach for the investigation of the genetic code robustness. Memetic Comput. 2014; 6(3):157–70.