Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Computational speed-up with a single qudit (2015)

  • Authors:
  • USP affiliated authors: VIDOTO, EDSON LUIZ GÉA - IFSC ; PINTO, DIOGO DE OLIVEIRA SOARES - IFSC ; AZEVÊDO, EDUARDO RIBEIRO DE - IFSC
  • USP Schools: IFSC; IFSC; IFSC
  • DOI: 10.1038/srep14671
  • Subjects: ALGORITMOS; RESSONÂNCIA MAGNÉTICA NUCLEAR QUADRUPOLAR
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/srep14671 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/srep14671 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository




        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89024220PROD024220
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GEDIK, Z.; SILVA, I. A.; ÇAKMAK, B.; et al. Computational speed-up with a single qudit. Scientific Reports, London, Nature, v. 5, p. 14671-1-14671-7, 2015. Disponível em: < http://dx.doi.org/10.1038/srep14671 > DOI: 10.1038/srep14671.
    • APA

      Gedik, Z., Silva, I. A., Çakmak, B., Karpat, G., Vidoto, E. L. G., Pinto, D. de O. S., et al. (2015). Computational speed-up with a single qudit. Scientific Reports, 5, 14671-1-14671-7. doi:10.1038/srep14671
    • NLM

      Gedik Z, Silva IA, Çakmak B, Karpat G, Vidoto ELG, Pinto D de OS, Azevedo ER de, Fanchini FF. Computational speed-up with a single qudit [Internet]. Scientific Reports. 2015 ; 5 14671-1-14671-7.Available from: http://dx.doi.org/10.1038/srep14671
    • Vancouver

      Gedik Z, Silva IA, Çakmak B, Karpat G, Vidoto ELG, Pinto D de OS, Azevedo ER de, Fanchini FF. Computational speed-up with a single qudit [Internet]. Scientific Reports. 2015 ; 5 14671-1-14671-7.Available from: http://dx.doi.org/10.1038/srep14671

    Referências citadas na obra
    Deutsch, D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97 (1985).
    Cleve, R., Ekert, A., Macchiavello, C. & Mosca, M. Quantum algorithms revisited. Proc. R. Soc. Lond. A 454, 339 (1998).
    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).
    van den Nest, M. Universal quantum computation with little entanglement. Phys. Rev. Lett. 110, 060504 (2013).
    Howard, M., Wallman, J., Veitch, V. & Emerson J. Contextuality supplies the ‘magic’ for quantum computation. Nature 510, 351 (2014).
    Kochen, S. & Specken, E. P. The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59 (1967).
    Klyachko, A. A., Can, M. A., Binicioğlu, S. & Shumovsky, A. S. Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101, 020403 (2008).
    Cory, D. G., Fahmy, A. F. & Havel, T. F. Ensemble quantum computing by NMR spectroscopy. Proceedings of the National Academy of Sciences USA 94, 1634 (1997).
    Cory, D. G. et al. NMR based quantum information processing: Achievements and prospects. Fortschritte der Physik 48, 875 (2000).
    Marx, R., Fahmy, A. F., Myers, J. M., Bermel, W. & Glaser, S. J. Approaching five-bit NMR quantum computing. Phys. Rev. A 62, 012310 (2000).
    Ramanathan, C. et al. NMR quantum information processing. Quantum Inf. Process 3, 15 (2004).
    Suter, D. & Mahesh, T. S. Spins as qubits: quantum information processing by nuclear magnetic resonance. J. Chem. Phys. 128, 052206 (2008).
    Jones, J. A. Quantum Computing with NMR. Prog. NMR Spectrosc. 59, 91 (2011).
    Du, J. et al. Implementation of a quantum algorithm to solve the Bernstein-Vazirani parity problem without entanglement on an ensemble quantum computer. Phys. Rev. A 64, 042306 (2001).
    Knill, E. & Laflamme, R. Power of One Bit of Quantum Information. Phys. Rev. Lett. 81, 5672 (1998).
    Laflamme, R., Cory, D. G., Negrevergne, C. & Viola, L. NMR quantum information processing and entanglement. Quant. Inf. Comp. 2, 166 (2002).
    Passante, G., Moussa, O., Trottier, D. A. & Laflamme, R. Experimental detection of nonclassical correlations in mixed-state quantum computation. Phys. Rev. A 84, 044302 (2001).
    Khitrin, A. K. & Fung, B. M. Nuclear magnetic resonance quantum logic gates using quadrupolar nuclei. J. Chem. Phys. 112, 6963 (2000).
    Sinha, N., Mahesh, T. S., Ramanathan, K. V. & Kumar, A. Toward quantum information processing by nuclear magnetic resonance: Pseudopure states and logical operations using selective pulses on an oriented spin 3/2 nucleus. J. Chem. Phys. 114, 4415 (2001).
    Ermakov, V. L. & Fung, B. M. Experimental realization of a continuous version of the Grover algorithm. Phys. Rev. A 66, 042310 (2002).
    Das, R. & Kumar, A. Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: Implementation of a quantum algorithm. Phys. Rev. A 68, 032304 (2003).
    Bonk, F. A. et al. Quantum-state tomography for quadrupole nuclei and its application on a two-qubit system. Phys. Rev. A 69, 042322 (2004).
    Bonk, F. A. et al. Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography. J. Mag. Res. 175, 226 (2005).
    Murali, K. V. R. M., Son, H.-B., Steffen, M., Judeinstein, P. & Chuang, I. L. Test by NMR of the phase coherence of electromagnetically induced transparency. Phys. Rev. Lett. 93, 033601 (2004).
    Kampermann, H. & Veeman, W. S. Characterization of quantum algorithms by quantum process tomography using quadrupolar spins in solid-state nuclear magnetic resonance. J. Chem. Phys. 122, 214108 (2005).
    Gopinath, T. & Kumar, A. Implementation of controlled phase shift gates and Collins version of Deutsch–Jozsa algorithm on a quadrupolar spin-7/2 nucleus using non-adiabatic geometric phases. J. Magn. Reson. 193, 168 (2008).
    Kondo, Y. et al. Multipulse operation and optical detection of nuclear spin coherence in a GaAs/AlGaAs quantum well. Phys. Rev. Lett. 101, 207601 (2008).
    Tan, Y. P. et al. Preparing Pseudo-Pure States in a Quadrupolar Spin System Using Optimal Control. Chinese Phys. Lett. 29, 127601 (2012).
    Araujo-Ferreira, A. G. et al. Quantum state tomography and quantum logical operations in a three qubits NMR quadrupolar system. Int. J. Quantum Inf. 10, 1250016 (2012).
    Araujo-Ferreira, A. G. et al. Classical bifurcation in a quadrupolar NMR system. Phys. Rev. A 87, 53605 (2013).
    Teles, J. et al. Quantum information processing by nuclear magnetic resonance on quadrupolar nuclei. Philos. T. R. Soc. A 370, 4770 (2012).
    Abragam, A. The Principles of Nuclear Magnetism (Oxford University Press, 1978).
    Fortunato, E. M. et al. Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing. J. Chem. Phys. 116, 7599 (2002).
    Teles, J. et al. Quantum state tomography for quadrupolar nuclei using global rotations of the spin system. J. Chem. Phys. 126, 154506 (2007).
    Oliveira, I. S., Bonagamba, T. J., Sarthour, R. S., Freitas, J. C. C. & deAzevedo, E. R. NMR Quantum Information Processing (Elsevier, Amsterdam, 2007).
    Nelder, J. A. & Mead, R. A simplex method for function minimization. Computer Journal 7, 308 (1965).
    Long, G. L., Yan, H. Y. & Sun, Y. Analysis of density matrix reconstruction in NMR quantum computing. J. Opt. B 3, 376 (2001).
    Kampermann, H. & Veeman, W. S. Quantum computing using quadrupolar spins in solid state NMR. Quantum Inf. Process 1, 327 (2002).
    Leskowitz, G. M. & Mueller, L. J. State interrogation in nuclear magnetic resonance quantum-information processing. Phys. Rev. A 69, 052302 (2004).
    Radley, K., Reeves, L. W. & Tracey, A. S. Effect of counterion substitution on the type and nature of nematic lyotropic phases from nuclear magnetic resonance studies. J. Phys. Chem. 80, 174 (1976).
    Dogra S., Arvind & Dorai, K. Determining the parity of a permutation using an experimental NMR qutrit. Phys. Lett. A 378, 3452 (2014).
    Zhan X., Li J., Qin H., Bian Z. & Xue P. Linear optical demonstration of quantum speed-up with a single qudit. Opt. Express 23 18422 (2015).
    Wang F. et al. Demonstration of quantum permutation algorithm with a single photon ququart. Sci. Rep. 5 10995 (2015).