Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Efficient resource allocation for web applications hosted in the cloud by means of weighted multi-objective linear programming (2015)

  • Authors:
  • USP affiliated authors: ESTRELLA, JÚLIO CEZAR - ICMC ; EHLERS, RICARDO SANDES - ICMC
  • USP Schools: ICMC; ICMC
  • DOI: 10.1145/2820426.2820435
  • Subjects: SISTEMAS DISTRIBUÍDOS; PROGRAMAÇÃO CONCORRENTE; INFERÊNCIA BAYESIANA; ESTATÍSTICA APLICADA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Conference titles: Brazilian Symposium on Multimedia and the Web - WebMedia '15
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1145/2820426.2820435 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1145/2820426.2820435 (Fonte: Unpaywall API)

    Título do periódico: Proceedings of the 21st Brazilian Symposium on Multimedia and the Web - WebMedia '15

    ISSN:



      Não possui versão em Acesso aberto

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2732911-10PROD 2732911
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MESSIAS, Valter Rogério; ESTRELLA, Júlio Cezar; EHLERS, Ricardo Sandes. Efficient resource allocation for web applications hosted in the cloud by means of weighted multi-objective linear programming. Anais.. New York, NY: ACM, 2015.Disponível em: DOI: 10.1145/2820426.2820435.
    • APA

      Messias, V. R., Estrella, J. C., & Ehlers, R. S. (2015). Efficient resource allocation for web applications hosted in the cloud by means of weighted multi-objective linear programming. In Proceedings. New York, NY: ACM. doi:10.1145/2820426.2820435
    • NLM

      Messias VR, Estrella JC, Ehlers RS. Efficient resource allocation for web applications hosted in the cloud by means of weighted multi-objective linear programming [Internet]. Proceedings. 2015 ;Available from: http://dx.doi.org/10.1145/2820426.2820435
    • Vancouver

      Messias VR, Estrella JC, Ehlers RS. Efficient resource allocation for web applications hosted in the cloud by means of weighted multi-objective linear programming [Internet]. Proceedings. 2015 ;Available from: http://dx.doi.org/10.1145/2820426.2820435

    Referências citadas na obra
    1998 world cup web site access logs. http://ita.ee.lbl.gov/html/contrib/WorldCup.html. Accessed: 2014-10-15.
    Clarknet-http - two weeks of http logs from the clarknet www server. http://ita.ee.lbl.gov/html/contrib/ClarkNet- HTTP.html. Accessed: 2014-10-15.
    Nasa-http - two months of http logs from the ksc-nasa www server. http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html. Accessed: 2014-10-15.
    M. Arlitt and T. Jin. A workload characterization study of the 1998 world cup web site. Network, IEEE, 14(3):30{37, 2000.
    M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications of the ACM, 53(4):50{58, 2010.
    M. Balaji, G. Rao, C. Kumar, et al. A comparitive study of predictive models for cloud infrastructure management. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on, pages 923--926. IEEE, 2014.
    A. Beloglazov and R. Buyya. Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers. In Proceedings of the 8th International Workshop on Middleware for Grids, Clouds and e-Science, page 4. ACM, 2010.
    G. E. Box, G. M. Jenkins, and G. C. Reinsel. Time series analysis: forecasting and control. John Wiley & Sons, 2013.
    J. Braun and D. J. Murdoch. A first course in statistical programming with R, volume 25. Cambridge University Press Cambridge, 2007.
    T. Clark. Quantifying the benefits of the rightscale cloud management platform. Fact Point Group Whitepaper, funded by Rightscale, 2010.
    G. B. Dantzig. Linear programming and extensions. Princeton university press, 1998.
    K. Deb and H. Gupta. Searching for robust pareto-optimal solutions in multi-objective optimization. Lecture Notes in Computer Science, 3410:150--164, 2005.
    M. Di Penta, G. Casazza, G. Antoniol, and E. Merlo. Modeling web maintenance centers through queue models. In Software Maintenance and Reengineering, 2001. Fifth European Conference on, pages 131--138. IEEE, 2001.
    H. Fernandez, G. Pierre, T. Kielmann, et al. Autoscaling web applications in heterogeneous cloud infrastructures. In IEEE International Conference on Cloud Engineering, 2014.
    D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. Fundamentals of queueing theory. John Wiley & Sons, 2013.
    N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn. Self-adaptive workload classification and forecasting for proactive resource provisioning. Concurrency and Computation: Practice and Experience, 2014.
    R. J. Hyndman and G. Athanasopoulos. Forecasting: principles and practice. OTexts, 2014.
    R. J. Hyndman and Y. Khandakar. Automatic time series for forecasting: the forecast package for r. Technical report, Monash University, Department of Econometrics and Business Statistics, 2007.
    J. Jiang, J. Lu, G. Zhang, and G. Long. Optimal cloud resource auto-scaling for web applications. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International Symposium on, pages 58--65. IEEE, 2013.
    H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh. Automated control in cloud computing: challenges and opportunities. In Proceedings of the 1st workshop on Automated control for datacenters and clouds, pages 13--18. ACM, 2009.
    T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano. Auto-scaling techniques for elastic applications in cloud environments. Department of Computer Architecture and Technology, University of Basque Country, Tech. Rep. EHU-KAT-IK-09, 12, 2012.
    C. Math. The apache commons mathematics library. http://commons.apache.org/proper/commons-math/, 2014. Accessed: 2015-08-04.
    D. A. Menascé, V. A. Almeida, and L. W. Dowdy. Capacity Planning for Web Services: metrics, models, and methods. Prentice Hall PTR Upper Saddle River, 2002.
    M. Miller. Cloud computing: Web-based applications that change the way you work and collaborate online. Que publishing, 2008.
    N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud using predictive models for workload forecasting. In Cloud Computing (CLOUD), 2011 IEEE International Conference on, pages 500{507. IEEE, 2011.
    S. Urbanek. rjava: Low-level r to java interface. http://CRAN.R-project.org/package=rJava, 2013. Accessed: 2015-08-04