Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial (2015)

  • Authors:
  • USP affiliated authors: BAGNATO, VANDERLEI SALVADOR - IFSC
  • USP Schools: IFSC
  • DOI: 10.1186/s13063-015-1093-3
  • Subjects: DIABETES MELLITUS; FOTOTERAPIA; DIODOS; EMISSÃO DA LUZ; EXERCÍCIO FÍSICO; OXIGÊNIO
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Trials
    • ISSN: 1745-6215
    • Volume/Número/Paginação/Ano: v. 16, p. 572-1-572-6, Dec. 2015
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1186/s13063-015-1093-3 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1186/s13063-015-1093-3 (Fonte: Unpaywall API)

    Título do periódico: Trials

    ISSN: 1745-6215

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Trials

    ISSN: 1745-6215

    Citescore - 2017: 2.17

    SJR - 2017: 1.291

    SNIP - 2017: 0.819


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89024474PROD024474
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FRANCISCO, Cristina de Oliveira; BELTRAME, Thomas; FERRARESI, Cleber; et al. Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial. Trials, London, BioMed Central, v. 16, p. 572-1-572-6, 2015. Disponível em: < http://dx.doi.org/10.1186/s13063-015-1093-3 > DOI: 10.1186/s13063-015-1093-3.
    • APA

      Francisco, C. de O., Beltrame, T., Ferraresi, C., Parizotto, N. A., Bagnato, V. S., Silva, A. B., et al. (2015). Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial. Trials, 16, 572-1-572-6. doi:10.1186/s13063-015-1093-3
    • NLM

      Francisco C de O, Beltrame T, Ferraresi C, Parizotto NA, Bagnato VS, Silva AB, Benze BG, Porta A, Catai AM. Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial [Internet]. Trials. 2015 ; 16 572-1-572-6.Available from: http://dx.doi.org/10.1186/s13063-015-1093-3
    • Vancouver

      Francisco C de O, Beltrame T, Ferraresi C, Parizotto NA, Bagnato VS, Silva AB, Benze BG, Porta A, Catai AM. Evaluation of acute effect of light-emitting diode (LED) phototherapy on muscle deoxygenation and pulmonary oxygen uptake kinetics in patients with diabetes mellitus: study protocol for a randomized controlled trial [Internet]. Trials. 2015 ; 16 572-1-572-6.Available from: http://dx.doi.org/10.1186/s13063-015-1093-3

    Referências citadas na obra
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year, and projections for 2030. Diabetes Care. 2004;2000:1047–53.
    Expert Committee on the D, Classification of Diabetes M. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26 Suppl 1:S5–20.
    Seyoum B, Estacio RO, Berhanu P, Schrier RW. Exercise capacity is a predictor of cardiovascular events in patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2006;3:197–201.
    Nadeau KJ, Zeitler PS, Bauer TA, Brown MS, Dorosz JL, Draznin B, et al. Insulin resistance in adolescents with type 2 diabetes is associated with impaired exercise capacity. J Clin Endocrinol Metab. 2009;94:3687–95.
    Regensteiner JG, Bauer TA, Reusch JE, Brandenburg SL, Sippel JM, Vogelsong AM, et al. Abnormal oxygen uptake kinetic responses in women with type II diabetes mellitus. J Appl Physiol. 1998;85:310–7.
    Francisco CO, Catai AM, Moura-Tonello SC, Lopes SL, Benze BG, Del Vale AM, et al. Cardiorespiratory fitness, pulmonary function and C-reactive protein levels in nonsmoking individuals with diabetes. Braz J Med Biol Res. 2014;47:426–31.
    Hughson RL. Oxygen uptake kinetics: historical perspective and future directions. Appl Physiol Nutr Metab. 2009;34:840–50.
    Regensteiner JG, Sippel J, McFarling ET, Wolfel EE, Hiatt WR. Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Med Sci Sports Exerc. 1995;27:875–81.
    Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, et al. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation. 2003;107:3040–6.
    Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK. Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation. Diabetes Care. 2003;26:899–904.
    He J, Watkins S, Kelley DE. Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes. 2001;50:817–23.
    Dumas JF, Simard G, Flamment M, Ducluzeau PH, Ritz P. Is skeletal muscle mitochondrial dysfunction a cause or an indirect consequence of insulin resistance in humans? Diabetes Metab. 2009;35:159–67.
    Yokota T, Kinugawa S, Hirabayashi K, Matsushima S, Inoue N, Ohta Y, et al. Oxidative stress in skeletal muscle impairs mitochondrial respiration and limits exercise capacity in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2009;297:H1069–1077.
    Baroni BM, Rodrigues R, Freire BB, Franke Rde A, Geremia JM, Vaz MA. Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol. 2015, 115:639-647.
    Miranda EF, de Oliveira LV, Antonialli FC, Vanin AA, de Carvalho Pde T, Leal-Junior EC. Phototherapy with combination of super-pulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. Lasers Med Sci 2015, 30:437-43.
    Paolillo FR, Corazza AV, Borghi-Silva A, Parizotto NA, Kurachi C, Bagnato VS. Infrared LED irradiation applied during high-intensity treadmill training improves maximal exercise tolerance in postmenopausal women: a 6-month longitudinal study. Lasers Med Sci. 2013, 28:415-22.
    Ferraresi C, de Brito Oliveira T, de Oliveira Zafalon L, de Menezes Reiff RB, Baldissera V, de Andrade Perez SE, et al. Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers Med Sci. 2011;26:349–58.
    Ferraresi C, Beltrame T, Fabrizzi F, Nascimento ES, Karsten M, Francisco CO, et al. Muscular pre-conditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebo-controlled trial with a single elite runner. Physiother Theory Pract. 2015;31:354–61.
    Hayworth CR, Rojas JC, Padilla E, Holmes GM, Sheridan EC, Gonzalez-Lima F. In vivo low-level light therapy increases cytochrome oxidase in skeletal muscle. Photochem Photobiol. 2010;86:673–80.
    Ferraresi C, Kaippert B, Avci P, Huang YY, de Sousa MV, Bagnato VS, et al. Low-level Laser (Light) Therapy Increases Mitochondrial Membrane Potential and ATP Synthesis in C2C12 Myotubes with a Peak Response at 3–6 h. Photochem Photobiol. 2015;91:411–6.
    Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M. Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med. 2000;27:427–37.
    Ihsan FR. Low-level laser therapy accelerates collateral circulation and enhances microcirculation. Photomed Laser Surg. 2005;23:289–94.
    De Marchi T, Leal Junior EC, Bortoli C, Tomazoni SS, Lopes-Martins RA, Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers Med Sci. 2012;27:231–6.
    Leal Junior EC, Lopes-Martins RA, Frigo L, De Marchi T, Rossi RP, de Godoi V, et al. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. J Orthop Sports Phys Ther. 2010;40:524–32.
    Leal Junior EC, Lopes-Martins RA, Rossi RP, De Marchi T, Baroni BM, de Godoi V, et al. Effect of cluster multi-diode light emitting diode therapy (LEDT) on exercise-induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers Surg Med. 2009;41:572–7.
    Leal Junior EC, Lopes-Martins RA, Baroni BM, De Marchi T, Taufer D, Manfro DS, et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers Med Sci. 2009;24:857–63.
    Bauer TA, Reusch JE, Levi M, Regensteiner JG. Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes. Diabetes Care. 2007;30:2880–5.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.
    Wasserman K, Hansen JE, Sue DY, Stringer WW, Whipp BJ. Principles of Exercise Testing and Interpretation. 3rd ed. Philadelphia: Williams & Wilkins; 1999.
    Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, et al. Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122:191–225.
    FMS. User's Guide. Amsterdam: Finapres Medical Systems BV; 2005.
    Wilkerson DP, Poole DC, Jones AM, Fulford J, Mawson DM, Ball CI, et al. Older type 2 diabetic males do not exhibit abnormal pulmonary oxygen uptake and muscle oxygen utilization dynamics during submaximal cycling exercise. Am J Physiol Regul Integr Comp Physiol. 2010;300:R685–692.
    Spencer MD, Murias JM, Kowalchuk JM, Paterson DH. Effect of moderate-intensity work rate increment on phase II tauVO(2), functional gain and Delta[HHb]. Eur J Appl Physiol. 2013;113:545–57.
    Spencer MD, Murias JM, Kowalchuk JM, Paterson DH. Pulmonary O(2) uptake and muscle deoxygenation kinetics are slowed in the upper compared with lower region of the moderate-intensity exercise domain in older men. Eur J Appl Physiol. 2011;111:2139–48.