Ver registro no DEDALUS
Exportar registro bibliográfico



Physiological and biochemical responses of Dolichos lablab L. to cadmium support its potential as a cadmium phytoremediator (2017)

  • Authors:
  • USP affiliated authors: AZEVEDO, RICARDO ANTUNES DE - ESALQ
  • USP Schools: ESALQ
  • DOI: 10.1007/s11368-015-1322-0
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11368-015-1322-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s11368-015-1322-0 (Fonte: Unpaywall API)

    Título do periódico: Journal of Soils and Sediments

    ISSN: 1439-0108,1614-7480

      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Soils and Sediments

    ISSN: 1439-0108

    Citescore - 2017: 2.6

    SJR - 2017: 0.919

    SNIP - 2017: 1.05

  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SOUZA, Lucas A; FERREIRA, Renato R; AZEVEDO, Ricardo Antunes de; et al. Physiological and biochemical responses of Dolichos lablab L. to cadmium support its potential as a cadmium phytoremediator. Journal of Soils and Sediments, Heidelberg, Springer Nature, v. 17, p. 1413-1426, 2017. Disponível em: < > DOI: 10.1007/s11368-015-1322-0.
    • APA

      Souza, L. A., Ferreira, R. R., Azevedo, R. A. de, Piotto, F. A., Dourado, M. N., Schmidt, D., et al. (2017). Physiological and biochemical responses of Dolichos lablab L. to cadmium support its potential as a cadmium phytoremediator. Journal of Soils and Sediments, 17, 1413-1426. doi:10.1007/s11368-015-1322-0
    • NLM

      Souza LA, Ferreira RR, Azevedo RA de, Piotto FA, Dourado MN, Schmidt D, Franco MR, Boaretto LF, Tezotto T. Physiological and biochemical responses of Dolichos lablab L. to cadmium support its potential as a cadmium phytoremediator [Internet]. Journal of Soils and Sediments. 2017 ; 17 1413-1426.Available from:
    • Vancouver

      Souza LA, Ferreira RR, Azevedo RA de, Piotto FA, Dourado MN, Schmidt D, Franco MR, Boaretto LF, Tezotto T. Physiological and biochemical responses of Dolichos lablab L. to cadmium support its potential as a cadmium phytoremediator [Internet]. Journal of Soils and Sediments. 2017 ; 17 1413-1426.Available from:

    Referências citadas na obra
    Adhikari T, Kumar A (2012) Phytoaccumulation and tolerance of Riccinus communis L. to nickel. Int J Phytorem 14:481–492
    Ahsan N, Nakamura T, Komatsu S (2012) Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress. Amino Acids 42:317–327
    Alexieva V, Sergiev I, Mapelli S, Karanov E (2001) The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ 24:1337–1344
    Andrade SAL, Silveira APD, Jorge RA, Abreu MF (2008) Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytorem 10:1–14
    Andrade SAL, Gratão PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P (2010) Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environ Exp Bot 68:198–207
    Andresen E, Küpper H (2013) Cadmium toxicity in plants. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality—metal ions in life sciences 11. Springer, pp. 395–413
    Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399
    Arruda SCC, Barbosa HS, Azevedo RA, Arruda MAZ (2011) Two-dimensional difference gel electrophoresis applied for analytical proteomics: fundamentals and applications to the study of plant proteomics. Analyst 136:4119–4126
    Arruda MAZ, Azevedo RA, Barbosa HS, Mataveli LRV, Oliveira SR, Arruda SCC, Gratão PL (2013) Comparative studies involving transgenic and non-transgenic soybean: what is going on? In: Board JE (ed) A comprehensive survey of international soybean research—genetics, physiology, agronomy and nitrogen relationships. Intech, Rijeka, Croatia, pp 583–613
    Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705
    Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292
    Azevedo RA, Gratão PL, Monteiro CC, Carvalho RF (2012) What is new in the research on cadmium-induced stress in plants? Food Energ Sec 1:133–140
    Basile A, Sorbo S, Cardi M, Lentini M, Castiglia D, Cianciullo P, Conte B, Loppi S, Esposito S (2015) Effects of heavy metals on ultrastructure and Hsp70 induction in Lemna minor L. exposed to water along the Sarno River, Italy. Ecotox Environ Safe 114:93–101
    Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240
    Beauchamp CH, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287
    Bertoli AC, Cannata MG, Carvalho R, Bastos ARR, Freitas MP, Augusto AS (2012) Lycopersicon esculentum submitted to Cd-stressful conditions in nutrition solution: nutrient contents and translocation. Ecotox Environ Safe 86:176–181
    Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120
    Bierkens JGEA (2000) Applications and pitfalls of stress-proteins in biomonitoring. Toxicology 153:61–72
    Bona E, Marsano F, Massa N, Cattaneo C, Cesaro P, Argese E, di Toppi LS, Cavaletto M, Berta G (2011) Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteomics 74:1338–1350
    Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254
    Caverzan A, Passaia G, Rosa SB, Ribeiro CW, Lazzarotto F, Margis-Pinheiro M (2012) Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011–1019
    Cruz FJR, Castro GLS, Silva Junior DD, Festucci-Buselli RA, Pinheiro HA (2013) Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensis plants. Photosynthetica 51:102–108
    D’Souza MR, Devaraj VR (2010) Biochemical responses of hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiol Plant 32:341–353
    de Souza LA, de Andrade SAL, de Souza SCR, Schiavinato MA (2012a) Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiol Plant 34:523–531
    de Souza SCR, de Andrade SAL, de Souza LA, Schiavinato MA (2012b) Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environl Manag 110:299–307
    Disla JMS, Gómez I, Pedreño JN, Jordán M (2014) The transfer of heavy metals to barley plants from soils amended with sewage sludge with different heavy metal burdens. J Soils Sedim 14:687–696
    Dominguez DM, Garcia FC, Raya AC, Santiago RT (2010) Cadmium-induced oxidative stress and the response of the antioxidative defense system in Spartina densiflora. Physiol Plant 139:289–302
    Dourado MN, Martins PF, Quecine MC, Piotto FA, Souza LA, Franco MR, Tezotto T, Azevedo RA (2013) Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann Appl Biol 163:494–507
    Dourado MN, Souza LA, Martins PF, Peters LP, Piotto FA, Azevedo RA (2014) Burkholderia sp. SCMS54 triggers a global stress defense in tomato enhancing cadmium tolerance. Water Air Soil Pollut 225:2159
    Elobeid M, Goebel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421
    Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Polati R, Berta G, Vallini G, Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837–4850
    Fidalgo F, Freitas R, Ferreira R, Pessoa A, Teixeira J (2011) Solanum nigrum L. antioxidant defence system isoenzymes are regulated transcriptionally and posttranslationally in Cd-induced stress. Environ Exp Bot 72:312–319
    Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46
    GE Healthcare (2004) 2-D electrophoresis: principles and methods
    Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122
    Gonçalves J, Tabaldi L, Cargnelutti D, Pereira L, Maldaner J, Becker A, Rossato L, Rauber R, Bagatini M, Bisognin D, Schetinger M, Nicoloso F (2009) Cadmium-induced oxidative stress in two potato cultivars. Biometals 22:779–792
    Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494
    Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008a) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333
    Gratão PL, Pompeu GB, Capaldi FR, Vitorello VA, Lea PJ, Azevedo RA (2008b) Antioxidant response of Nicotiana tabacum cv. bright yellow 2 cells to cadmium and nickel stress. Plant Cell Tiss Org Cult 94:73–83
    Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA (2012) Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79–96
    Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peters LP, Azevedo RA (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28:803–816
    Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266
    He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus x canescens. Physiol Plant 143:50–63
    Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
    Hediji H, Djebali W, Cabasson C, Maucourt M, Baldet P, Bertrand A, Zoghlami LB, Deborde C, Moing A, Brouquisse R, Chaibi W, Gallusci P (2010) Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants. Ecotox Environ Safe 73:1965–1974
    Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Sta Bull 347
    Hradilova J, Rehulka P, Rehulkova H, Vrbova M, Griga M, Brzobohaty B (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31:421–431
    Huguet S, Bert V, Laboudigue A, Barthes V, Marie-Pierre I, Llorens I, Schat H, Sarret G (2012) Cd speciation and localization in the hyperaccumulator Arabidopsis halleri. Environ Exp Bot 82:54–65
    Ingle R, Smith JAC, Sweetlove L (2005) Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum. Biometals 18:627–641
    Jouili H, Bouazizi H, El Ferjani E (2011) Plant peroxidases: biomarkers of metallic stress. Acta Physiol Plant 33:2075–2082
    Kabata-Pendias A, Pendias H (2001) Trace elements in soil and plants, 3rd edn. CRC Press, Boca Raton
    Kim C, Meskauskiene R, Apel K, Laloi C (2008) No single way to understand singlet oxygen signalling in plants. Embo Rep 9:435–439
    Konotop Y, Meszaros P, Spiess N, Mistrikova V, Pirselova B, Libantova J, Moravcikova J, Taran N, Hauptvogel P, Matusikova I (2012) Defense responses of soybean roots during exposure to cadmium, excess of nitrogen supply and combinations of these stressors. Mol Biol Rep 39:10077–10087
    Kraus TE, McKersie BD, Fletcher RA (1995) Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity. J Plant Physiol 145:570–576
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    Lee J, Jiang W, Qiao YL, Cho YI, Woo MO, Chin JH, Kwon SW, Hong SS, Choi IY, Koh HJ (2011) Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice. Proteomics 11:455–468
    Li Y, Zhang S, Jiang W, Liu D (2013) Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ Sci Pollut Res 20:1117–1123
    Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428
    Lopes CA, Barbosa HS, Galazzi RM, Koolen HHF, Gozzo FC, Arruda MAZ (2015) Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures. Ecotox Environ Safe 119:170–177
    López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385
    Lovy L, Latt D, Sterckeman T (2013) Cadmium uptake and partitioning in the hyperaccumulator Noccaea caerulescens exposed to constant Cd concentrations throughout complete growth cycles. Plant Soil 362:345–354
    Lübben S, Sauerbeck D (1991) The uptake and distribution of heavy metals by spring wheat. Water Air Soil Pollut 57–58:239–247
    Lux A, Martinka M, Vaculík M, White PJ (2011) Root response to cadmium in the rizosphere: a review. J Exp Bot 62:21–37
    Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258
    Maksimović I, Kastori R, Krstić L, Luković J (2007) Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biol Plant 51:589–592
    Matsuno H, Uritani I (1972) Physiological behavior of peroxidase isoenzymes in sweet potato root tissue injured by cutting or with black root. Plant Cell Physiol 13:1091–1101
    Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
    Mittler R, Poulos TL (2007) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd, pp. 87–100
    Monteiro CC, Carvalho RF, Gratão PL, Carvalho G, Tezotto T, Medici LO, Peres LEP, Azevedo RA (2011) Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses. Environ Exp Bot 71:306–320
    Nadgorska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A (2013) Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ Sci Pollut Res 20:1124–1134
    Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-especific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880
    Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61
    Pereira LB, Mazzanti CMA, Cargnelutti D, Rossato LV, Gonçalves JF, Calgaroto N, Dressler V, Nicoloso FT, Federizzi LC, Morsch VM, Schetinger MRC (2011) Differential responses of oat genotypes: oxidative stress provoked by aluminum. Biometals 24:73–83
    Podazza G, Arias M, Prado FE (2012) Cadmium accumulation and strategies to avoid its toxicity in roots of the citrus rootstock Citrumelo. J Hazard Mater 215:83–89
    Prasch CM, Sonnewald U (2015) Signaling events in plants: Stress factors in combination change the picture. Environ Exp Bot 114:4–14
    Procópio SO, Santos JB, Silva AA, Pires FR, Ribeiro Júnior JI, Santos EA, Ferreira LR (2004) Seleção de plantas com potencial para fitorremediação de solos contaminados com o herbicida trifloxysulfuron sodium. Planta Daninha 22:315–322
    Rahman MM, Azirun SM, Boyce AN (2013) Enhanced accumulation of copper and lead in Amaranth (Amaranthus paniculatus), Indian Mustard (Brassica juncea) and Sunflower (Helianthus annuus). PLoS One 8(5):e62941
    Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Phytoremediation of toxic metals: using plants to clean up the environment., pp 193–230
    Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71
    Rezvani M, Zaefarian F, Miransari M, Nematzadeh GA (2012) Uptake and translocation of cadmium and nutrients by Aeluropus littoralis. Arch Agron Soil Sci 58:1413–1425
    Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847
    Safarzadeh S, Ronaghi A, Karimian N (2013) Effect of cadmium toxicity on micronutrient concentration, uptake and partitioning in seven rice cultivars. Arch Agron Soil Sci 59:231–245
    Sánchez-Pardo B, Carpena RO, Zornoza P (2013) Cadmium in white lupin nodules: Impact on nitrogen and carbon metabolism. J Plant Physiol 170:265–271
    Sharmin SA, Alam I, Kim KH, Kim YG, Kim PJ, Bahk JD, Lee BH (2012) Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant Sci 187:113–126
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860
    Siddiqui MH, Al-Whaibi MH, Sakran AM, Ali HM, Basalah MO, Faisal M, Alatar A, Al-Amri AA (2013) Calcium-induced amelioration of boron toxicity in radish. J Plant Growth Regul 32:61–71
    Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444
    Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32:2–11
    Smith IK, Vierheller TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithilbis (2-nitrobenzoic acid). Anal Biochem 175:408–413
    Souza LA, Andrade SAL, Souza SCR, Schiavinato MA (2013a) Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils. Int J Phytorem 15:465–476
    Souza LA, Piotto FA, Nogueirol RC, Azevedo RA (2013b) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci Agric 70:290–295
    Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270
    Tezotto T, Favarin JL, Azevedo RA, Alleoni LRF, Mazzafera P (2012) Coffee is highly tolerant to cadmium, nickel and zinc: plant and soil nutritional status, metal distribution and bean yield. Field Crop Res 125:25–34
    Tuomainen MH, Nunan N, Lehesranta SJ, Tervahauta AI, Hassinen VH, Schat H, Koistinen KM, Auriola S, McNicol J, Karenlampi SO (2006) Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions. Proteomics 6:3696–3706
    Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68:1563–1575
    Walliwalagedara C, Atkinson I, van Keulen H, Cutright T, Wei R (2010) Differential expression of proteins induced by lead in the dwarf sunflower Helianthus annuus. Phytochemistry 71:1460–1465
    Wang Z, Zhang Y, Huang Z, Huang L (2008) Antioxidative response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137–149
    Wang Y, Hu H, Zhu LY, Li XX (2012) Response to nickel in the proteome of the metal accumulator plant Brassica juncea. J Plant Interact 7:230–237
    Xu C, Xu Y, Huang B (2008) Protein extraction for two-dimensional gel electrophoresis of proteomic profiling in turfgrass. Crop Sci 48:1608–1614
    Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729
    Younis M (2010) Response of Lablab purpureus (L.) sweet/rhizobium symbiosis and growth to potassium supply under different water regimes. J Plant Nutr 33:1400–1409
    Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B (2013) Effects of cadmium on enzymatic and non-enzymatic antioxidative defences of rice (Oriza sativa L.). Int J Phytorem 15:513–521
    Zancheta ACF, Abreu CA, Zambrosi FCB, Erismann NM, Lagôa AMMA (2015) Cadmium accumulation by jack-bean and sorghum in hydroponic culture. Int J Phytorem 17:298–303
    Zhao FY, Liu W, Zhang SY (2009) Different responses of plant growth and antioxidant system to the combination of cadmium and heat stress in transgenic and non-transgenic rice. J Integr Plant Biol 51:942–950
    Zhao L, Sun YL, Cui SX, Chen M, Yang HM, Liu HM, Chai TY, Huang F (2011) Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere 85:56–66
    Zhu Y, Bi D, Yuan L, Yin X (2012) Phytoremediation of cadmium and copper contaminated soils. In: Yin X, Yuan L (eds) Phytoremediation and Biofortification: two sides of one coin. Springer Briefs in Molecular Science. Springer, New York, NY, USA, pp 75–81