Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

'M IND. 1' and 'M IND. 3' muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product (2015)

  • Authors:
  • USP affiliated authors: CAMARINI, ROSANA - ICB ; MARCOURAKIS, TANIA - FCF
  • USP Schools: ICB; FCF
  • DOI: 10.1038/srep17555
  • Subjects: PIRÓLISE; COCAÍNA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/srep17555 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/srep17555 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GARCIA, Raphael Caio Tamborelli; DATI, Lívia Mendonça Munhoz; TORRES, Larissa Helena; et al. 'M IND. 1' and 'M IND. 3' muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product. Scientific Reports, London, v. 5, p. 1-12 art. 17555, 2015. Disponível em: < http://dx.doi.org/10.1038/srep17555 > DOI: 10.1038/srep17555.
    • APA

      Garcia, R. C. T., Dati, L. M. M., Torres, L. H., Silva, M. A. A. da, Udo, M. S. B., Abdalla, F. M. F., et al. (2015). 'M IND. 1' and 'M IND. 3' muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product. Scientific Reports, 5, 1-12 art. 17555. doi:10.1038/srep17555
    • NLM

      Garcia RCT, Dati LMM, Torres LH, Silva MAA da, Udo MSB, Abdalla FMF, Costa JL da, Gorjão R, Afeche SC, Yonamine M, Niswender CM, Conn PJ, Camarini R, Sandoval MRL, Marcourakis T. 'M IND. 1' and 'M IND. 3' muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product [Internet]. Scientific Reports. 2015 ; 5 1-12 art. 17555.Available from: http://dx.doi.org/10.1038/srep17555
    • Vancouver

      Garcia RCT, Dati LMM, Torres LH, Silva MAA da, Udo MSB, Abdalla FMF, Costa JL da, Gorjão R, Afeche SC, Yonamine M, Niswender CM, Conn PJ, Camarini R, Sandoval MRL, Marcourakis T. 'M IND. 1' and 'M IND. 3' muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product [Internet]. Scientific Reports. 2015 ; 5 1-12 art. 17555.Available from: http://dx.doi.org/10.1038/srep17555

    Referências citadas na obra
    UNODC (United Nations Office on Drugs and Crime), World Drug Report (2014). United Nations Publication, Sales No., E.14.XI.7. Available at: http://www.unodc.org/documents/wdr2014/World_Drug_Report_2014_web.pdf (Date of access: 04/09/2014).
    Schwartz, B. G., Rezkalla, S. & Kloner, R. A. Cardiovascular effects of cocaine. Circulation 122, 2558–2569 (2010).
    Mao, J. T. et al. Cocaine inhibits human endothelial cell IL-8 production: the role of transforming growth factor-β. Cell Immunol 181(1), 38–43 (1997).
    Heesch, C. M. et al. Cocaine activates platelets and increases the formation of circulating platelet containing microaggregates in humans. Heart 83(6), 688–695 (2000).
    Valente, M. J., Carvalho, F., Bastos, Md., de Pinho, P. G. & Carvalho, M. Contribution of oxidative metabolism to cocaine-induced liver and kidney damage. Curr Med Chem 19(33), 5601–5606 (2012).
    Riezzo, I. et al. Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem 19, 5624–5646 (2012).
    Goel, N., Pullman, J. M. & Coco, M. Cocaine and kidney injury: a kaleidoscope of pathology. Clin Kidney J 7, 513–517, 10.1093/ckj/sfu092 (2014).
    Vale, A. Cocaine. Medicine 35(11), 607 (2007).
    Goldstein, R. A., DesLauriers, C. & Burda, A. M. Cocaine: history, social implications, and toxicity–a review. Dis Mon 55(1), 6–38, 10.1016/j.disamonth.2008.10.002 (2009).
    Pires, A. et al. Repeated inhalation of crack-cocaine affects spermatogenesis in young and adult mice. Inhal Toxicol 24(7), 439–446, 10.3109/08958378.2012.684450 (2012).
    Fandiño, A. S., Toennes, S. W. & Kauert, G. F. Studies on hydrolytic and oxidative metabolic pathways of anhydroecgonine methyl ester (methylecgonidine) using microssomal preparations from rat organs. Chem Res Toxicol 15, 1543–1548 (2002).
    Paul, B. D., Lalani, S., Bosy, T., Jacobs, A. J. & Huestis, M. A. Concentration profiles of cocaine, pyrolytic methyl ecgonidine and thirteen metabolites in human blood and urine: determination by gas chromatography–mass spectrometry. Biomed Chromatogr 19, 677–688 (2005).
    Erzouki, H. K., Allen, A. C., Newman, A. H., Goldberg, S. R. & Schindler, C. W. Effects of cocaine, cocaine metabolites and cocaine pyrolysis products on the hindbrain cardiac and respiratory centers of the rabbit. Life Sci 57, 1861–1868 (1995).
    Woolf, J. H., Huang, L., Ishiguro, Y. & Morgan, J. P. Negative inotropic effect of methylecgonidine, a major product of cocaine base pyrolysis, on ferret and human myocardium. J Cardiovasc Pharmacol 30, 352–359 (1997).
    Scheidweiler, K. B., Plessinger, M. A., Shojaie, J., Wood, R. W. & Kwong, T. C. Pharmacokinetics and pharmacodynamics of methylecgonidine, a crack cocaine pyrolyzate. JPET 307, 1179–1187 (2003).
    Garcia, R. C. T. et al. Neurotoxicity of anhydroecgonine methyl ester, a crack cocaine pyrolysis product. Toxicol Sci 128, 223–234, 10.1093/toxsci/kfs140 (2012).
    Eglen, R. M. Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 43, 105–136 (2005).
    Vistoli, G. et al. Docking analyses on human muscarinic receptors: Unveiling the subtypes peculiarities in agonists binding. Bioorg Med Chem 16(6), 3049–3058 (2008).
    Oki, T. et al. Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res 133(1), 6–11 (2005).
    Cardoso, C. C., Ricardo, V. P., Frussa-Filho, R., Porto, C. S. & Abdalla, F. M. Effects of 17β-estradiol on expression of muscarinic acetylcholine receptor subtypes and estrogen receptor α in rat hippocampus. Eur J Pharmacol 634(1–3), 192–200 (2010).
    Nash, M. S., Willets, J. M., Billups, B., John Challiss, R. A. & Nahorski, S. R. Synaptic activity augments muscarinic acetylcholine receptor-stimulated inositol 1,4,5-trisphosphate production to facilitate Ca2+ release in hippocampal neurons. J Biol Chem 279(47), 49036–49044 (2004).
    Levey, A. I. Immunological localization of M1-M5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52, 441–448 (1993).
    Bradley, K. N., Rowan, E. G. & Harvey, A. L. Effects of muscarinic toxins MT2 and MT7, from green mamba venom, on m1, m3 and m5 muscarinic receptors expressed in Chinese hamster ovary cells. Toxicon 41, 207–215 (2003).
    Shih, Y-T. et al. Arecoline, a major alkaloid of the areca nut, causes neurotoxicity through enhancement of oxidative stress and suppression of the antioxidant protective system. Free Radic Biol Med 49, 1471–1479 (2010).
    Dong, G. Z., Kameyama, K., Rinken, A. & Haga, T. Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1–m5) expressed in baculovirus-infected insect cells. J Pharmacol Exp Ther 274, 378–384 (1995).
    Galluzzi, L., Blomgren, K. & Kroemer, G. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 10(7), 481–494, 10.1038/nrn2665 (2009).
    Seo, M. D., Enomoto, M., Ishiyama, N., Stathopulos, P. B. & Ikura, M. Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. Biochim Bipohys Acta 10.1016/j.bbamcr.2014.11.023 [Epub ahead of print] (2014).
    Wodja, U., Salinska, E. & Kuznicki, J. Calcium ions in neuronal degeneration. Life 60(9), 575–590 (2008).
    Jerusalinsky, D. et al. Muscarinic toxin selective for m4 receptors impairs memory in the rat. Neuroreport 9(7), 1407–1411 (1998).
    Servent, D. & Fruchart-Gaillard, C. Muscarinic toxins: tools for the study of the pharmacological and functional proprieties of muscarinic receptors. J Neurochem 109, 1193–1202, 10.1111/j.1471-4159.2009.06092.x (2009).
    Bashkatova, V., Hornick, A., Vanin, A. & Prast, H. Antagonist of M1 muscarinic acetylcholine receptor prevents neurotoxicity induced by amphetamine via nitric oxide pathway. Ann N Y Acad Sci 1139, 172–176, 10.1196/annals.1432.004 (2008).
    Moncada, S., Palmer, R. M. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2), 109–142 (1991).
    Garthwaite, J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 14(2), 60–67 (1991).
    Prast, H. & Philippu, A. Nitric oxide as modulator of neuronal function. Prog Neurobiol 64(1), 51–68 (2001).
    Cunha-Oliveira, T. et al. Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Res 1089, 44–54 (2006).
    Cunha, P. J., Nicastri, S., Gomes, L. P., Moino, R. M. & Peluso, M. A. Neuropsychological impairments in crack cocaine-dependent inpatients: preliminary findings. Rev Bras Psiquiatr 26(2), 103–106 (2004).
    Banker, G. A. & Cowan, W. M. Rat hippocampal neurons in dispersed cell culture. Brain Res 126, 397–442 (1977).
    Huettner, J. E. & Baughman, R. W. Primary culture of identified neurons from the visual cortex of postnatal rats. J Neurosci 6, 3044–3060 (1986).
    Jahr, C. E. & Stevens, C. F. Glutamate activates multiple single channel conductances in hippocampal neurons. Nature 325, 522–525 (1987).
    Silva, R. F. M. et al. Dissociated primary nerve cell cultures as models for assessment of neurotoxicity. Toxicol Lett 163, 1–9 (2006).
    Brewer, G. J., Torricelli, J. R., Evege, E. K. & Price, P. J. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35, 567–576 (1993).
    Rigoni, M. Snake presynaptic neurotoxins with phospholipase A2 activity induce punctate swellings of neurites and exocytosis of synaptic vesicles. J Cell Sci 117, 3561–3570 (2004).
    de Carvalho, N. D. et al. Neurotoxicity of coral snake phospholipases A2 in cultured rat hippocampal neurons. Brain Res 1552, 1–16, 10.1016/j.brainres.2014.01.008 (2014).
    Pereira, R. T., Porto, C. S., Godinho, R. O. & Abdalla, F. M. Effects of estrogen on intracellular signaling pathways linked to activation of muscarinic acetylcholine receptors and on acetylcholinesterase activity in rat hippocampus. Biochem Pharmacol 75(9), 1827–1834, 10.1016/j.bcp.2008.01.016 (2008).
    Ascoli, M., Pignataro, O. P. & Segaloff, D. L. The inositol phosphate/diacylglycerol pathway in MA-10 Leydig tumor cells. Activation by arginine vasopressin and lack of effect of epidermal growth factor and human choriogonadotropin. J Biol Chem 264(12), 6674–6681 (1989).
    Ban, J. Y. et al. Neuroprotective effect of oxyresveratrol from smilacis chinae rhizome on amyloid Beta protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Biol Pharm Bull 29(12), 2419–2424 (2006).
    Lima, R. M. et al. Cytotoxic effects of catechol to neuroblastoma N2a cells. Gen Physiol Biophys 27(4), 306–314 (2008).
    Sheffler, D. J. et al. A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol 76, 356–368; 10.1124/mol.109.056531 (2009).
    Shirey, J. K. et al. An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol 4(1), 42–50 (2008).
    Shirey, J. K. et al. A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29(45), 14271–14286; 10.1523/JNEUROSCI.3930-09.2009 (2009).
    Munson, P. J. & Rodbard, D. Ligand: a versatile computerized approach for characterization of ligand-binding system. Anal Biochem 107, 220–239 (1980).
    Cheng, Y. C. & Prusoff, W. H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (IC50) of an enzymatic reaction. Biochem Pharmacol 22, 3099–3108 (1973).
    Arunlakshana, O. & Schild, H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 14(1), 48–58 (1959).
    Brady, A. E. et al. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 327, 941–953; 10.1124/jpet.108.140350 (2008).
    Konigame, V.C. et al. Estrogen receptors mediate total inositol phosphate accumulation in the rat endometrium. Steroids 76, 1582–1589 (2011).
    Doods, H. N., Willim, K. D., Boddeke H. W. & Entzeroth, M. Characterization of muscarinic receptors in guinea-pig uterus. Eur J Pharmacol 250(2), 223–230 (1993).