Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Spatial resolution effect of light coupling structures (2015)

  • Authors:
  • USP affiliated authors: BORGES, BEN HUR VIANA - EESC
  • USP Schools: EESC
  • DOI: 10.1038/srep18500
  • Subjects: ÓPTICA ELETRÔNICA; ABSORÇÃO DA LUZ; SEMICONDUTORES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/srep18500 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/srep18500 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: submittedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EESC2743965-10PROD-019008
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      JUNTAO, Li; KEZHENG, Li; SCHUSTER, Christian; et al. Spatial resolution effect of light coupling structures. Scientific Reports, London, n. 5, 2015. Disponível em: < http://dx.doi.org/10.1038/srep18500 > DOI: 10.1038/srep18500.
    • APA

      Juntao, L., Kezheng, L., Schuster, C., Rongbin, S., Xuehua, W., Borges, B. H. V., et al. (2015). Spatial resolution effect of light coupling structures. Scientific Reports, ( 5). doi:10.1038/srep18500
    • NLM

      Juntao L, Kezheng L, Schuster C, Rongbin S, Xuehua W, Borges BHV, Krauss TF, Martins ER. Spatial resolution effect of light coupling structures [Internet]. Scientific Reports. 2015 ;( 5):Available from: http://dx.doi.org/10.1038/srep18500
    • Vancouver

      Juntao L, Kezheng L, Schuster C, Rongbin S, Xuehua W, Borges BHV, Krauss TF, Martins ER. Spatial resolution effect of light coupling structures [Internet]. Scientific Reports. 2015 ;( 5):Available from: http://dx.doi.org/10.1038/srep18500

    Referências citadas na obra
    Joannopoulos, J. D., Johnson, S. G., Meade, R. D. & Winn, J. N. Photonic crystals: molding the flow of light, Second edn. (Princeton University Press: Princeton, NJ, 2008).
    Taillaert, D. et al. An Out-of-Plane Grating Coupler for Efficient Butt-Coupling Between Compact Planar Waveguides and Single-Mode Fibers. IEEE J Quantum Elect 38, 949–955 (2002).
    Roelkens, G. et al. Bridging the gap between nanophotonic waveguide circuits and single mode optical fibers using diffractive grating structures. J Nanosci Nanotechnol 10, 1551–1562 (2010).
    Miyai, E. et al. Photonics: lasers producing tailored beams. Nature 441, 946 (2006).
    Wright, J. B. et al. Multi-colour nanowire photonic crystal laser pixels. Sci Rep-UK 3, 2982 (2013).
    Martins, E. R. et al. Low-Threshold Nanoimprinted Lasers Using Substructured Gratings for Control of Distributed Feedback. Adv Opt Mater 1, 563–566 (2013).
    Boroditsky, M., Krauss, T. F., Coccioli, R., Bhat, R. V. & R., Yablonovitch E. Light extraction from optically pumped light-emitting diodes by thin-slab photonic crystals. Appl Phys Lett 75, 1036 (1999).
    Zhmakin, A. I. Enhancement of light extraction from light emitting diodes. Phys Rep 498, 198–241 (2011).
    Chutinan, A. & John S. Light trapping and absorption optimization in certain thin-film photonic crystal architectures. Phys Rev A 78, 023825 (2008).
    Park, Y. et al. Absorption enhancement using photonic crystals for silicon thin film solar cells. Opt Express 17, 14312–14321 (2009).
    Yu, Z. F., Raman, A. & Fan, S. H. Fundamental limit of nanophotonic light trapping in solar cells. P Natl Acad Sci USA 107, 17491–17496 (2010).
    Mokkapati, S. & Catchpole, K. R. Nanophotonic light trapping in solar cells. J Appl Phys 15, 112 (2012).
    Mallick, S. B. et al. Ultrathin crystalline-silicon solar cells with embedded photonic crystals. Appl Phys Lett 100, 053113 (2012).
    Martins, E. R., Li, J. T., Liu, Y. K., Zhou, J. Y. & Krauss, T. F. Engineering gratings for light trapping in photovoltaics: The supercell concept. Phys Rev B 86, 041404(R) (2012).
    Priolo, F., Gregorkiewicz T., Galli M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol 9, 19–32 (2014).
    Schuster, C. S. et al. Plasmonic and diffractive nanostructures for light trapping-an experimental comparison. Optica 2, 194–200 (2015).
    Gomard, G., Peretti, R., Drouard, E., Meng, X. Q. & Seassal, C. Photonic crystals and optical mode engineering for thin film photovoltaics. Opt Express 21, A515–A527 (2013).
    Fahr, S., Rockstuhl, C. & Lederer, F. Engineering the randomness for enhanced absorption in solar cells. Appl Phys Lett 92, 171114 (2008).
    Bozzola, A., Liscidini, M. & Andreani, L. C. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns. Opt Express 20, A224–A244 (2012).
    Battaglia, C. et al. Light Trapping in Solar Cells: Can Periodic Beat Random? Acs Nano 6, 2790–2797 (2012).
    Oskooi, A. et al. Partially disordered photonic-crystal thin films for enhanced and robust photovoltaics. Appl Phys Lett 100, 181110 (2012).
    Vynck, K., Burresi, M., Riboli, F. & Wiersma, D. S. Photon management in two-dimensional disordered media. Nat Mater 11, 1017–1022 (2012).
    Martins, E. R. et al. Deterministic quasi-random nanostructures for photon control. Nat Commun 4, 2665 (2013).
    Bozzola, A., Liscidini, M. & Andreani, L. C. Broadband light trapping with disordered photonic structures in thin-film silicon solar cells. Prog Photovolt: Res Appl 22, 1237–1244 (2013).
    Peretti, R., Gomard, G., Lalouat, L., Seassal, C. & Drouard, E. Absorption control in pseudodisordered photonic-crystal thin films. Phys Rev A 88 (2013).
    Lin, C. X. & Povinelli, M. L. Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics. Opt Express 19, A1148–A1154 (2011).
    Lin, C., Martinez, L. J. & Povinelli, M. L. Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells. Opt Express 21, A872–882 (2013).
    Sundhu, S., Yu, Z. & Fan, S. Detailed balance analysis of nanophotonic solar cells. Opt Express 21, 1209–1217 (2013).
    Ferry, V. E. et al. Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells. Nano Lett 11, 4239–4245 (2011).
    Roelkens, G. et al. III-V/silicon photonics for on-chip and inter-chip optical interconnects. Laser Photonics Rev 4, 751–779 (2010).