Ver registro no DEDALUS
Exportar registro bibliográfico



Enhanced UV emission from silver/ZnO and gold/ZnO core-shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence (2015)

  • Authors:
  • USP affiliated authors: BAFFA FILHO, OSWALDO - FFCLRP
  • USP Schools: FFCLRP
  • DOI: 10.1038/srep14004
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/srep14004 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/srep14004 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:

    • Outras alternativas de URLs em Acesso Aberto:

        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher

        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository

        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository

    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCLRP2744290pcd 2744290 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GUIDELLI, E. J.; BAFFA, Oswaldo; CLARKE, D. R. Enhanced UV emission from silver/ZnO and gold/ZnO core-shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence. Scientific Reports, London, v. 5, 2015. Disponível em: < > DOI: 10.1038/srep14004.
    • APA

      Guidelli, E. J., Baffa, O., & Clarke, D. R. (2015). Enhanced UV emission from silver/ZnO and gold/ZnO core-shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence. Scientific Reports, 5. doi:10.1038/srep14004
    • NLM

      Guidelli EJ, Baffa O, Clarke DR. Enhanced UV emission from silver/ZnO and gold/ZnO core-shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence [Internet]. Scientific Reports. 2015 ; 5Available from:
    • Vancouver

      Guidelli EJ, Baffa O, Clarke DR. Enhanced UV emission from silver/ZnO and gold/ZnO core-shell nanoparticles: photoluminescence, radioluminescence, and optically stimulated luminescence [Internet]. Scientific Reports. 2015 ; 5Available from:

    Referências citadas na obra
    McMahon, S. J., Mendenhall, M. H., Jain, S. & Currell, F. Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys. Med. Biol. 53, 5635–5651, 10.1088/0031-9155/53/20/005 (2008).
    Chithrani, D. B. et al. Gold Nanoparticles as Radiation Sensitizers in Cancer Therapy. Radiat. Res. 173, 719–728, 10.1667/rr1984.1 (2010).
    Hainfeld, J. F., Slatkin, D. N., Focella, T. M. & Smilowitz, H. M. Gold nanoparticles: a new X-ray contrast agent. Brit. J. Radiol. 79, 248–253, 10.1259/bjr/13169882 (2006).
    McMahon, S. J. et al. Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci. Rep. 1, 1810.1038/srep00018 (2011).
    Guidelli, É., Kinoshita, A., Ramos, A. & Baffa, O. Silver nanoparticles delivery system based on natural rubber latex membranes. J. Nanopart. Res. 15, 1–9, 10.1007/s11051-013-1536-2 (2013).
    Guidelli, E. J., Ramos, A. P. & Baffa, O. Optically Stimulated Luminescence Under Plasmon Resonance Conditions Enhances X-Ray Detection. Plasmonics 9, 1049–1056 (2014).
    Guidelli, E. J. & Baffa, O. Influence of photon beam energy on the dose enhancement factor caused by gold and silver nanoparticles: An experimental approach. Med. Phys. 41, 32101–32101 (2014).
    Stranik, O., McEvoy, H. M., McDonagh, C. & MacCraith, B. D. Plasmonic enhancement of fluorescence for sensor applications. Sens. Actuator B-Chem. 107, 148–153, 10.1016/j.snb.2004.08.032 (2005).
    Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology and Medicine. Accounts Chem. Res. 41, 1578–1586, 10.1021/ar7002804 (2008).
    Guidelli, E. J., Ramos, A. P., Zaniquelli, M. E. D., Nicolucci, P. & Baffa, O. Synthesis and Characterization of Gold/Alanine Nanocomposites with Potential Properties for Medical Application as Radiation Sensors. ACS Appl. Mater. Interfaces 4, 5844–5851, 10.1021/am3014899 (2012).
    Kapoor, S. Preparation, characterization and surface modification of silver particles. Langmuir 14, 1021–1025, 10.1021/la9705827 (1998).
    Lakowicz, J. R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171–194, 10.1016/j.ab.2004.11.026 (2005).
    Lakowicz, J. R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1, 5–33, 10.1007/s11468-005-9002-3 (2006).
    Lakowicz, J. R. et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 133, 1308–1346, 10.1039/b802918k (2008).
    Costi, R., Saunders, A. E. & Banin, U. Colloidal Hybrid Nanostructures: A New Type of Functional Materials. Angew. Chem. -Int. Edit. 49, 4878–4897, 10.1002/anie.200906010 (2010).
    Gorokhova, E. I. et al. Structural, optical and scintillation characteristics of ZnO ceramics. J. Opt. Technol. 78, 753–760 (2011).
    Xu, Z. et al. Improved performance of non-volatile memory with Au-Al2O3 core-shell nanocrystals embedded in HfO2 matrix. Appl. Phys. Lett. 100, 20350910.1063/1.4720085 (2012).
    Aguirre, M. E., Rodriguez, H. B., San Roman, E., Feldhoff, A. & Grela, M. A. Ag@ZnO Core-Shell Nanoparticles Formed by the Timely Reduction of Ag+ Ions and Zinc Acetate Hydrolysis in N,N-Dimethylformamide: Mechanism of Growth and Photocatalytic Properties. J. Phys. Chem. C 115, 24967–24974, 10.1021/jp209117S (2011).
    Sounderya, N. & Zhang, Y. Use of Core/Shell Structured Nanoparticles for Biomedical Applications. Recent. Pat. Biomed. Eng. 1, 9 (2008).
    Gorokhova, E. I. et al. Optical, luminescence and scintillation properties of ZnO and ZnO:Ga ceramics. Journal of Optical Technology 75, 741–746, 10.1364/jot.75.000741 (2008).
    Ma, Q. & Nakazato, K. Low-temperature fabrication of ZnO nanorods/ferrocenyl-alkanethiol bilayer electrode and its application for enzymatic glucose detection. Biosens. Bioelectron. 51, 362–365, 10.1016/j.bios.2013.08.004 (2014).
    Batista, P. D. & Mulato, M. ZnO extended-gate field-effect transistors as pH sensors. Appl. Phys. Lett. 87, 14350810.1063/1.2084319 (2005).
    Lu, X.-H. et al. Enhanced performance of dye-sensitized solar cells via the incorporation of an internal layer consisting of three-dimensional shuttlelike up-converter and ZnO nanocrystalline aggregates. J. Power Sources 243, 588–593, 10.1016/j.jpowsour.2013.06.058 (2013).
    Wang, Y., Li, X., Lu, G., Quan, X. & Chen, G. Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities. J. Phys. Chem. C 112, 7332–7336, 10.1021/jp7113175 (2008).
    Chen, W. Nanoparticle Self-Lighting Photodynarnic Therapy for Cancer Treatment. J. Biomed. Nanotechnol. 4, 369–376, 10.1166/jbn.2008.001 (2008).
    Bourret-Courchesne, E. D., Derenzo, S. E. & Weber, M. J. Development of ZnO:Ga as an ultra-fast scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 601, 358–363, 10.1016/j.nima.2008.12.206 (2009).
    Pal, U., Melendrez, R., Chernov, V. & Barboza-Flores, M. Thermoluminescence properties of ZnO and ZnO: Yb nanophosphors. Appl. Phys. Lett. 89, 18311810.1068/1.2374866 (2006).
    Cruz-Vazquez, C., Burruel-Ibarra, S. E., Grijalva-Monteverde, H., Chernov, V. & Bernal, R. Thermally and optically stimulated luminescence of new ZnO nanophosphors exposed to beta particle irradiation. Radiat. Eff. Defects Solids 162, 737–743, 10.1080/10420150701482089 (2007).
    Yukihara, E. G. & McKeever, S. W. S. Optically stimulated luminescence (OSL) dosimetry in medicine. Phys. Med. Biol. 53, R351–R379, 10.1088/0031-9155/53/20/r01 (2008).
    Eduardo G. Yukihara & McKeever, S. W. S. Optically Stimulated Luminescence: Fundamentals and Applications. 1st edn, (John Wiley & Sons Ltd, 2011).
    Gou, L., Chipara, M. & Zaleski, J. M. Convenient, rapid synthesis of Ag nanowires. Chem. Mat. 19, 1755–1760, 10.1021/cm070160a (2007).
    Yang, M. et al. Well-aligned ZnO rod arrays grown on glass substrate from aqueous solution. Appl. Surf. Sci. 254, 2917–2921, 10.1016/j.apsusc.2007.09.108 (2008).
    Chen, S. J. et al. Structural and optical properties of uniform ZnO nanosheets. Adv. Mater. 17, 586-+, 10.1002/adma.200401263 (2005).
    Maier, S. A. Plasmonics: Fundamentals and Applications. (Springer, 2010).
    Cross, R. B. M., De Souza, M. M. & Narayanan, E. M. S. A low temperature combination method for the production of ZnO nanowires. Nanotechnology 16, 2188–2192, 10.1088/0957-4484/16/10/035 (2005).
    Mahalingam, T. et al. Low temperature wet chemical synthesis of good optical quality vertically aligned crystalline ZnO nanorods. Nanotechnology 18, 03560610.1088/0957-4484/18/2/035606 (2007).
    Liu, K. et al. Giant enhancement of top emission from ZnO thin film by nanopatterned Pt. Appl. Phys. Lett. 94, 151102 (2009).
    Ren, Q. et al. Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires. Nanotechnology 23, 425201 (2012).
    Margueron, S. & Clarke, D. R. The high temperature photoluminescence and optical absorption of undoped ZnO single crystals and thin films. J. Appl. Phys. 116, 193101 (2014).
    Tanabe, K. Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J. Phys. Chem. C 112, 15721–15728 (2008).
    Bagnall, D. et al. High temperature excitonic stimulated emission from ZnO epitaxial layers. Appl. Phys. Lett. 73, 1038–1040 (1998).
    Mahmood, K., Park, S. B. & Sung, H. J. Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures. J. Mater. Chem. C 1, 3138–3149, 10.1039/c3tc00082f (2013).
    Lin, H. Y. et al. Enhancement of band gap emission stimulated by defect loss. Optics Express 14, 2372–2379, 10.1364/oe.14.002372 (2006).
    Chu, S., Ren, J., Yan, D., Huang, J. & Liu, J. Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on photoluminescence. Appl. Phys. Lett. 101, 043122 (2012).
    Mahanti, M. & Basak, D. Highly enhanced UV emission due to surface plasmon resonance in Ag-ZnO nanorods. Chem. Phys. Lett. 542, 110–116, 10.1016/j.cplett.2012.06.004 (2012).
    Zhang, N., Tang, W., Wang, P., Zhang, X. & Zhao, Z. In situ enhancement of NBE emission of Au–ZnO composite nanowires by SPR. Crystengcomm 15, 3301–3304 (2013).
    Gryczynski, I., Malicka, J., Gryczynski, Z. & Lakowicz, J. R. Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 324, 170–182 (2004).