Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

ABCG2 is a potential marker of tumor-initiating cells in breast cancer (2015)

  • Authors:
  • USP affiliated authors: SICCHIERI, RENATA DANIELLE - FMRP ; CARRARA, HELIO HUMBERTO ANGOTTI - FMRP ; MUGLIA, VALDAIR FRANCISCO - FMRP ; ANDRADE, JURANDYR MOREIRA DE - FMRP ; TIEZZI, DANIEL GUIMARÃES - FMRP
  • USP Schools: FMRP; FMRP; FMRP; FMRP; FMRP
  • DOI: 10.1007/s13277-015-3647-0
  • Subjects: NEOPLASIAS MAMÁRIAS; QUIMIOTERAPIA; CARCINOMA DE DUCTOS INFILTRANTE; EXPRESSÃO GÊNICA
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Tumor Biology
    • ISSN: 1010-4283
    • Volume/Número/Paginação/Ano: v. 36, n. 12, p. 9233-9243, 2015
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s13277-015-3647-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s13277-015-3647-0 (Fonte: Unpaywall API)

    Título do periódico: Tumor Biology

    ISSN: 1010-4283,1423-0380



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Tumor Biology

    ISSN: 1010-4283

    Citescore - 2017: 3.27

    SJR - 2017: 1.149

    SNIP - 2017: 0.825


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2748756pcd 2748756 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SICCHIERI, Renata Danielle; SILVEIRA, William Abraham da; MANDARANO, Larissa Raquel Mouro; et al. ABCG2 is a potential marker of tumor-initiating cells in breast cancer. Tumor Biology, Dordrecht, v. 36, n. 12, p. 9233-9243, 2015. Disponível em: < http://dx.doi.org/10.1007/s13277-015-3647-0 > DOI: 10.1007/s13277-015-3647-0.
    • APA

      Sicchieri, R. D., Silveira, W. A. da, Mandarano, L. R. M., Oliveira, T. M. G. de, Carrara, H. H. A., Muglia, V. F., et al. (2015). ABCG2 is a potential marker of tumor-initiating cells in breast cancer. Tumor Biology, 36( 12), 9233-9243. doi:10.1007/s13277-015-3647-0
    • NLM

      Sicchieri RD, Silveira WA da, Mandarano LRM, Oliveira TMG de, Carrara HHA, Muglia VF, Andrade JM de, Tiezzi DG. ABCG2 is a potential marker of tumor-initiating cells in breast cancer [Internet]. Tumor Biology. 2015 ; 36( 12): 9233-9243.Available from: http://dx.doi.org/10.1007/s13277-015-3647-0
    • Vancouver

      Sicchieri RD, Silveira WA da, Mandarano LRM, Oliveira TMG de, Carrara HHA, Muglia VF, Andrade JM de, Tiezzi DG. ABCG2 is a potential marker of tumor-initiating cells in breast cancer [Internet]. Tumor Biology. 2015 ; 36( 12): 9233-9243.Available from: http://dx.doi.org/10.1007/s13277-015-3647-0

    Referências citadas na obra
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. Aldh1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.
    Campbell LL, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle. 2007;6:2332–8.
    Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 2010;16:45–55.
    Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS. Stem cells in normal breast development and breast cancer. Cell Prolif. 2003;36 Suppl 1:59–72.
    Abraham BK, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H. Prevalence of cd44+/cd24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res. 2005;11:1154–9.
    Beriwal S, Schwartz GF, Komarnicky L, Garcia-Young JA. Breast-conserving therapy after neoadjuvant chemotherapy: long-term results. Breast J. 2006;12:159–64.
    Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10:R25.
    Fisher B, Brown A, Mamounas E, Wieand S, Robidoux A, Margolese RG, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from national surgical adjuvant breast and bowel project b-18. J Clin Oncol. 1997;15:2483–93.
    Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER, et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol. 1998;16:2672–85.
    Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.
    Zhou L, Jiang Y, Yan T, Di G, Shen Z, Shao Z, et al. The prognostic role of cancer stem cells in breast cancer: a meta-analysis of published literatures. Breast Cancer Res Treat. 2010;122:795–801.
    Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65:5506–11.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human mcf-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665–70.
    Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 2008;10:R52.
    Avital I, Stojadinovic A, Wang H, Mannion C, Cho WC, Wang J, et al. Isolation of stem cells using spheroids from fresh surgical specimen: an analytic mini-review. Cancer Genomics Proteomics. 2014;11:57–65.
    Pommier SJ, Hernandez A, Han E, Massimino K, Muller P, Diggs B, et al. Fresh surgical specimens yield breast stem/progenitor cells and reveal their oncogenic abnormalities. Ann Surg Oncol. 2012;19:527–35.
    Abrial SC, Penault-Llorca F, Delva R, Bougnoux P, Leduc B, Mouret-Reynier MA, et al. High prognostic significance of residual disease after neoadjuvant chemotherapy: a retrospective study in 710 patients with operable breast cancer. Breast Cancer Res Treat. 2005;94:255–63.
    Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med. 2001;345:833–5.
    Benderra Z, Faussat AM, Sayada L, Perrot JY, Chaoui D, Marie JP, et al. Breast cancer resistance protein and p-glycoprotein in 149 adult acute myeloid leukemias. Clin Cancer Res. 2004;10:7896–902.
    Diestra JE, Scheffer GL, Catala I, Maliepaard M, Schellens JH, Scheper RJ, et al. Frequent expression of the multi-drug resistance-associated protein bcrp/mxr/abcp/abcg2 in human tumours detected by the bxp-21 monoclonal antibody in paraffin-embedded material. J Pathol. 2002;198:213–9.
    Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the atp binding cassette (abc) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.
    Blot E, Laberge-Le Couteulx S, Jamali H, Cornic M, Guillemet C, Duval C, et al. Cxcr4 membrane expression in node-negative breast cancer. Breast J. 2008;14:268–74.
    Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP, et al. A possible role for cxcr4 and its ligand, the cxc chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol. 2001;167:4747–57.
    Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of cxcr4 blocks breast cancer metastasis. Cancer Res. 2005;65:967–71.
    Porcile C, Bajetto A, Barbero S, Pirani P, Schettini G. Cxcr4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Ann N Y Acad Sci. 2004;1030:162–9.
    Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, et al. Cxcr4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64:8604–12.
    Miyake T, Nakayama T, Naoi Y, Yamamoto N, Otani Y, Kim SJ, et al. Gstp1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in er-negative breast cancer. Cancer Sci. 2012;103:913–20.
    Team RC. R: a language and environment for statistical computing. Vienna: Foundation for Statistical Computing; 2014.
    Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy–analysis of affymetrix genechip data at the probe level. Bioinformatics. 2004;20:307–15.
    Carlson M. Hgu133plus2.Db: Affymetrix human genome u133 plus 2.0 array annotation data (chip hgu133plus2) 2014. http://www.bioconductor.org/packages/release/data/annotation/manuals/hgu133plus2.db/man/hgu133plus2.db.pdf .
    Morrissey ER, Diaz-Uriarte R. Pomelo ii: finding differentially expressed genes. Nucleic Acids Res. 2009;37:W581–6.
    Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3, Article3.
    Gregory R, Warnes BB, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B. Gplots: various r programming tools for plotting data. 2014. http://cran.r-project.org/web/packages/gplots/gplots.pdf .
    Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. Genecards version 3: the human gene integrator. Database (Oxford). 2010;2010, baq020.
    Yadav BS, Sharma SC, Chanana P, Jhamb S. Systemic treatment strategies for triple-negative breast cancer. World J Clin Oncol. 2014;5:125–33.
    Chioni AM, Brackenbury WJ, Calhoun JD, Isom LL, Djamgoz MB. A novel adhesion molecule in human breast cancer cells: voltage-gated Na+ channel beta1 subunit. Int J Biochem Cell Biol. 2009;41:1216–27.
    Krupp M, Weinmann A, Galle PR, Teufel A. Actin binding lim protein 3 (ablim3). Int J Mol Med. 2006;17:129–33.
    Varisli L. Meta-analysis of the expression of the mitosis-related gene fam83d. Oncol Lett. 2012;4:1335–40.
    Rath O, Kozielski F. Kinesins and cancer. Nat Rev Cancer. 2012;12:527–39.
    Reinhold WC, Erliandri I, Liu H, Zoppoli G, Pommier Y, Larionov V. Identification of a predominant co-regulation among kinetochore genes, prospective regulatory elements, and association with genomic instability. PLoS One. 2011;6, e25991.
    Amato A, Schillaci T, Lentini L, Di Leonardo A. Cenpa overexpression promotes genome instability in prb-depleted human cells. Mol Cancer. 2009;8:119.
    Wascher RA, Bostick PJ, Huynh KT, Turner R, Qi K, Giuliano AE, et al. Detection of mage-a3 in breast cancer patients’ sentinel lymph nodes. Br J Cancer. 2001;85:1340–6.
    Wong PP, Yeoh CC, Ahmad AS, Chelala C, Gillett C, Speirs V, et al. Identification of magea antigens as causal players in the development of tamoxifen-resistant breast cancer. Oncogene. 2014;33:4579–88.
    Hofmann HS, Hansen G, Richter G, Taege C, Simm A, Silber RE, et al. Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clin Cancer Res. 2005;11:1086–92.
    Hu Y, Xing J, Wang L, Huang M, Guo X, Chen L, et al. Rgs22, a novel cancer/testis antigen, inhibits epithelial cell invasion and metastasis. Clin Exp Metastasis. 2011;28:541–9.
    Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, et al. Human oestrogen receptor cdna: sequence, expression and homology to v-erb-a. Nature. 1986;320:134–9.
    Yamamoto KK, Pousette A, Chow P, Wilson H, el Shami S, French CK. Isolation of a cdna encoding a human serum marker for acute pancreatitis. Identification of pancreas-specific protein as pancreatic procarboxypeptidase b. J Biol Chem. 1992;267:2575–81.
    Keysar SB, Jimeno A. More than markers: biological significance of cancer stem cell-defining molecules. Mol Cancer Ther. 2010;9:2450–7.
    Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.
    Zhang M, Atkinson RL, Rosen JM. Selective targeting of radiation-resistant tumor-initiating cells. Proc Natl Acad Sci U S A. 2010;107:3522–7.
    Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013;2:3.
    Zinzi L, Contino M, Cantore M, Capparelli E, Leopoldo M, Colabufo NA. Abc transporters in cscs membranes as a novel target for treating tumor relapse. Front Pharmacol. 2014;5:163.
    Scharenberg CW, Harkey MA, Torok-Storb B. The abcg2 transporter is an efficient hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–12.
    Tiezzi DG, Valejo FA, Marana HR, Carrara HH, Benevides L, Antonio HM, Sicchieri RD, Milanezi CM, Silva JS, de Andrade JM. Cd44(+)/cd24 (−) cells and lymph node metastasis in stage i and ii invasive ductal carcinoma of the breast. Med Oncol. 2011;29(3):1479–85.
    Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K, et al. The cd44+/cd24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 2008;10:R53.
    Krishnamurthy P, Schuetz JD. The role of abcg2 and abcb6 in porphyrin metabolism and cell survival. Curr Pharm Biotechnol. 2011;12:647–55.
    Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (bcrp/abcg2) in cancer drug resistance. Biochem Pharmacol. 2012;83:1084–103.
    Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L, et al. Mesenchymal stem cells promote mammosphere formation and decrease e-cadherin in normal and malignant breast cells. PLoS One. 2010;5, e12180.
    Yan XL, Fu CJ, Chen L, Qin JH, Zeng Q, Yuan HF, et al. Mesenchymal stem cells from primary breast cancer tissue promote cancer proliferation and enhance mammosphere formation partially via egf/egfr/akt pathway. Breast Cancer Res Treat. 2012;132:153–64.