Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Linear grouping of predictor instances to infer gene networks (2015)

  • Authors:
  • USP affiliated authors: BARRERA, JUNIOR - IME
  • USP Schools: IME
  • DOI: 10.1007/s13721-015-0105-2
  • Subjects: BIOINFORMÁTICA; GENÉTICA ESTATÍSTICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s13721-015-0105-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s13721-015-0105-2 (Fonte: Unpaywall API)

    Título do periódico: Network Modeling Analysis in Health Informatics and Bioinformatics

    ISSN: 2192-6662,2192-6670



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Network Modeling and Analysis in Health Informatics and Bioinformatics

    ISSN: 2192-6662

    Citescore - 2017: 0.87

    SJR - 2017: 0.201

    SNIP - 2017: 0.387


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IME2753282-10PROD-2753282
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MONTOYA CUBAS, Carlos Fernando; MARTINS JÚNIOR, David Correa; SANTOS, Carlos Silva; BARRERA, Junior. Linear grouping of predictor instances to infer gene networks. Network Modeling Analysis in Health Informatics and Bioinformatics, Vienna, v. 4, n. article º 34, p. 17 , 2015. Disponível em: < http://dx.doi.org/10.1007/s13721-015-0105-2 > DOI: 10.1007/s13721-015-0105-2.
    • APA

      Montoya Cubas, C. F., Martins Júnior, D. C., Santos, C. S., & Barrera, J. (2015). Linear grouping of predictor instances to infer gene networks. Network Modeling Analysis in Health Informatics and Bioinformatics, 4( article º 34), 17 . doi:10.1007/s13721-015-0105-2
    • NLM

      Montoya Cubas CF, Martins Júnior DC, Santos CS, Barrera J. Linear grouping of predictor instances to infer gene networks [Internet]. Network Modeling Analysis in Health Informatics and Bioinformatics. 2015 ; 4( article º 34): 17 .Available from: http://dx.doi.org/10.1007/s13721-015-0105-2
    • Vancouver

      Montoya Cubas CF, Martins Júnior DC, Santos CS, Barrera J. Linear grouping of predictor instances to infer gene networks [Internet]. Network Modeling Analysis in Health Informatics and Bioinformatics. 2015 ; 4( article º 34): 17 .Available from: http://dx.doi.org/10.1007/s13721-015-0105-2

    Referências citadas na obra
    Akutsu T, Miyano S, Kuhara S (1999) Identification of genetic networks from a small number of gene expression patterns under the boolean network model. Pac Symp Biocomput 4:17–28
    Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in drosophila melanogaster. J Theor Biol 223(1):1–18
    Angeletti M, Culmone R, Merelli E (2001) An intelligent agents architecture for dna-microarray data integration. Tech. rep., U. of Camerino, Italy
    Barabsi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
    Barrera J, Cesar-Jr RM, Martins-Jr DC, Vencio RZN, Merino EF, Yamamoto MM, Leonardi FG, Pereira CAB, del Portillo HA (2007) Constructing probabilistic genetic networks of Plasmodium falciparum from dynamical expression signals of the intraerythrocytic development cycle. In: Methods of Microarray Data Analysis V, chap 2, pp 11–26. Springer (2007)
    Bozdech Z, Llins M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. Plos Biol 1(1)
    Brun M, Dougherty ER, Shmulevich I (2005) Steady-state probabilities for attractors in probabilistic boolean networks. Signal Process 85(10):1993–2013
    Davidich MI, Bornholdt S (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3(2):e1672
    D’haeseleer P, Liang S, Somgyi R (1999) Tutorial: Gene expression data analysis and modeling. In: Pacific Symposium on Biocomputing. Hawaii
    Dougherty ER (2011) Validation of gene regulatory networks: scientific and inferential. Brief Bioinform 12(3):245–252
    Dougherty ER, Barrera J, Mozelle G, Kim S, Brun M (2001) Multiresolution analysis for optimal binary filters. J Math Imaging Vis 14(1):53–72. doi: 10.1023/A:1008311431244
    Dougherty ER, Brun M, Trent J, Bittner ML (2009) A conditioning-based model of contextual regulation. IEEE/ACM Trans Comput Biol Bioinform 6(2):310–320
    Dougherty ER, Kim S, Chen Y (2000) Coefficient of determination in nonlinear signal processing. EURASIP J Signal Process 80(10):2219–2235
    Erds P, RTnyi A (1959) On random graphs. Publ Math Debr 6:290–297
    Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16(11):2923–2939
    Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):e124–131
    Friedman N, Linial M, Nachman I, Pe’er D (2000) Using bayesian networks to analyze expression data. J Comput Biol 7:601–620
    Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2009) Gene regulatory network inference: data integration in dynamic models-a review. Biosystems 96:86–103
    Ivanov I, Dougherty ER (2006) Modeling genetic regulatory networks: continuous or discrete? J Biol Syst 14(2):219–229
    Jong HD (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103
    Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 9(10):770–780. doi: 10.1038/nrm2503
    Kauffman SA (1969) Homeostasis and differentiation in random genetic control networks. Nature 224(215):177–178
    Kelemen A, Abraham A, Chen Y (2008) Computational Intelligence in Bioinformatics. Springer, Berlin, Heidelberg
    Lahdesmaki H, Shmulevich I (2003) On learning gene regulatory networks under the boolean network model. Mach Learn 52:147–167
    Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101(14):4781–4786
    Liang S, Fuhrman S, Somogyi R (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac Simpos Biocomput 3:18–29
    Lopes FM, Martins-Jr DC, Barrera J, Cesar-Jr RM (2014) A feature selection technique for inference of graphs from their known topological properties: revealing scale-free gene regulatory networks. Inf Sci 272:1–15
    Lopes FM, Martins-Jr DC, Cesar-Jr RM (2008) Feature selection environment for genomic applications. BMC Bioinform 9(451)
    Lopes FM, Ray SS, Hashimoto RF, Cesar-Jr RM (2014) Entropic biological score: a cell cycle investigation for grns inference. Gene 541:129–137
    Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc Nat Acad Sci 107(14):6286–6291
    Martins-Jr DC, Braga-Neto U, Hashimoto RF, Dougherty ER, Bittner ML (2008) Intrinsically multivariate predictive genes. IEEE J Sel Top Signal Process 2(3):424–439
    Martins-Jr DC, Oliveira EA, Braga-Neto UM, Hashimoto RF, Cesar-Jr RM (2013) Signal propagation in bayesian networks and its relationship with intrinsically multivariate predictive variables. Inf Sci 225:18–34
    McCluskey EJ (1956) Minimization of boolean functions. Bell Syst Tech J 35(5):1417–1444
    Montoya-Cubas CF, Martins-Jr DC, Santos CS, Barrera J (2014) Gene networks inference through linear grouping of variables. In: 14th IEEE International Conference on Bioinformatics and Bioengineering (BIBE), pp 243–250. Boca Raton, FL
    Nam D, Seo S, Kim S (2006) An efficient top-down search algorithm for learning boolean networks of gene expression. Mach Learn 65:229–245
    Ristevski B (2013) A survey of models for inference of gene regulatory networks. Nonlinear Anal: Model Control 18(4):444–465
    Sánchez L, Thieffry D (2001) A logical analysis of the drosophila gap-gene system. J Theor Biol 211(2):115–141
    Shalon D, Smith SJ, Brown PO (1996) A dna microarray system for analyzing complex dna samples using two-color fluorescent probe hybridization. Genome Res pp 639–45
    Shmulevich I, Dougherty ER (2007) Genomic signal processing. Princeton University Press, New Jersey
    Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2):261–274
    Snoep JL, Westerhoff HV (2005) From isolation to integration, a systems biology approach for building the silicon cell. Top Curr Genet 13:13–30
    Styczynski MP, Stephanopoulos G (2005) Overview of computational methods for the inference of gene regulatory networks. Comput Chem Eng 29(3):519–534
    Theodoridis S, Koutroumbas K (2006) Pattern Recognition. Elsevier, Academic Press, Amsterdam, New York
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487
    Wang Z, Gerstein M, Snyder M (2009) Rna-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63
    Zhang Y, Qian M, Ouyang Q, Deng M, Li F, Tang C (2006) Stochastic model of yeast cell-cycle network. Physica D 219(1):35–39