A new long-term survival model with interval-censored data (2015)
- Authors:
- USP affiliated authors: ORTEGA, EDWIN MOISES MARCOS - ESALQ ; CANCHO, VICENTE GARIBAY - ICMC
- USP Schools: ESALQ; ICMC
- DOI: 10.1007/s13571-015-0102-6
- Subjects: ESTATÍSTICA; ESTATÍSTICA APLICADA; REGRESSÃO LINEAR; ANÁLISE DE REGRESSÃO E DE CORRELAÇÃO
- Language: Inglês
- Imprenta:
- Publisher: Springer India
- Publisher place: Calcutta
- Date published: 2015
- Source:
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
-
Título: Sankhya B
ISSN: 0976-8386
Citescore - 2017: 0.08
SJR - 2017: 0.1
SNIP - 2017: 0
-
ABNT
HASHIMOTO, Elizabeth M; ORTEGA, Edwin Moisés Marcos; CORDEIRO, Gauss Moutinho; CANCHO, Vicente Garibay. A new long-term survival model with interval-censored data. Sankhya B, Calcutta, Springer India, v. 77, n. 2 , p. 207-239, 2015. Disponível em: < http://dx.doi.org/10.1007/s13571-015-0102-6 > DOI: 10.1007/s13571-015-0102-6. -
APA
Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., & Cancho, V. G. (2015). A new long-term survival model with interval-censored data. Sankhya B, 77( 2 ), 207-239. doi:10.1007/s13571-015-0102-6 -
NLM
Hashimoto EM, Ortega EMM, Cordeiro GM, Cancho VG. A new long-term survival model with interval-censored data [Internet]. Sankhya B. 2015 ; 77( 2 ): 207-239.Available from: http://dx.doi.org/10.1007/s13571-015-0102-6 -
Vancouver
Hashimoto EM, Ortega EMM, Cordeiro GM, Cancho VG. A new long-term survival model with interval-censored data [Internet]. Sankhya B. 2015 ; 77( 2 ): 207-239.Available from: http://dx.doi.org/10.1007/s13571-015-0102-6 - A power series beta Weibull regression model for predicting breast carcinoma
- A model with long-term survivors: negative binomial Birnbaum-Saunders
- Log-new weibull extension regression models with censored data
- Log-Burr XII regression models with censored data
- Log-burr XII regression models with consored data
- The Conway-Maxwell-Poisson-generalized gamma regression model with long-term survivors
- Log-Burr XII regression models with censored data
- Heteroscedastic log-exponentiated Weibull regression model
- Influence diagnostics in the weibull mixture model with covariates
- The geometric exponential Poisson distribution
Informações sobre o DOI: 10.1007/s13571-015-0102-6 (Fonte: oaDOI API)
Versões disponíveis em Acesso Aberto do: 10.1007/s13571-015-0102-6 (Fonte: Unpaywall API)
Título do periódico: Sankhya B
ISSN: 0976-8386,0976-8394
Não possui versão em Acesso aberto
Informações sobre o Citescore
Biblioteca | Cód. de barras | Núm. de chamada |
---|---|---|
ICMC | 2755580-10 | PROD 2755580 |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
Balakrishnan, N., Leiva, V. and Sanhueza, A. (2009). Mixture inverse Gaussian distribution and its transformations, moments and applications. Statistics 43, 911–104. |
---|
Barreto-Souza, W., Lemos, A. and Cordeiro, G.M. (2011). The Weibull-geometric distribution 81, 645–657. |
Berkson J. and Gage R. P. (1952). Survival cure for cancer patients following treatment. Journal of the American Statistical Association 47, 501–515. |
Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society B 11, 15–53. |
Cancho, V. G., Ortega, E. M. M. and Bolfarine, H. (2009). The log-exponentiated-Weibull regression models with cure rate: Local influence and residual analysis. Journal of Data Science 7, 433–458. |
Colosimo, E. A. and Giolo, S. R. (2006). Análise de Sobrevivência Aplicada. Edgard Blücher, São Paulo. |
Cook, R. D. (1986). Assessment of local influence. Journal of the Royal Statistical Society, Series B 48, 133–169. |
Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman & Hall/CRC, Boca Raton. |
Cooner, F., Banerjee, S., Carlin, B. P. and Sinha, D. (2007). Flexible cure rate modeling under latent activation schemes. Journal of the American Statistical Association 102, 560–572. |
Davison, A. and Hinkley, D. (1997). Bootstrap methods and their application. Cambridge University Press. |
de Castro, M., Cancho, V. G. and Rodrigues, J. (2009). A bayesian long-term survival model parametrized in the cured fraction. Biometrical Journal 51, 443–455. |
de Castro, M., Cancho, V. G. and Rodrigues, J. (2010). A note on a unified approach for cure rate models. Brazilian Journal of Probability and Statistics 24, 10–13. |
DiCiccio, T. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science 11, 189–212. |
Doornik, J. A. (2002). Object-Oriented Matrix Programming Using Ox, 3rd ed. Timberlake Consultants Press and Oxford, London. |
Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics 7, 1–26. |
Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap. Chapman & Hill, p. 436. |
Fachini, J. B., Ortega, E. M. M. and Louzada-Neto, F. (2008). Influence diagnostics for polyhazard models in the presence of covariates. Statistical Methods and Applications 17, 413–433. |
Gradshteyn, I. S. and Ryzhik, I. M. (2000). Table of Integrals, Series and Products (sixth edition). Academic Press, San Diego. |
Hashimoto, E. M., Ortega, E. M. M., Cancho, V. G. and Cordeiro, G. M. (2010). The log-exponentiated weibull regression model for interval-censored data. Computational Statistics and Data Analysis 54, 1017–1035. |
Ibrahim, J. G., Chen, M.-H. and Sinha, D. (2001). Bayesian Survival Analysis. Springer, New York. |
Kim, M. Y., DeGruttola, V. G. and Lagakos, S. W. (1993). Analyzing doubly censored data with covariates, with application to aids. Biometrics 49, 13–22. |
Maller, R. A. and Zhou, X. (1996). Survival Analysis with Long-Term Survivors. Wiley, New York. |
Mudholkar, G. S., Srivastava, D. K. and Friemer, M. (1995). The exponentiated Weibull family: A reanalysis of the bus-motor-failure data. Technometrics 37, 436–445. |
Nadarajh, S. and Kotz, S. (2006). The beta exponential distribution. Reliability Engineering and System Safety 91, 689–697. |
Ortega, E. M. M., Bolfarine, H. and Paula, G. A. (2003). Influence diagnostics in generalized log-gamma regression models. Computational Statistics and Data Analysis 42, 165–186. |
Piegorsch, W. W. (1990). Maximum likelihood estimation for the negative binomial dispersion parameter. Biometrics 46, 863–867. |
Press, W. H., Teulosky, S. A., Veterling, W. T. and Flannery, B. P. (1992). Numerical recipes in C: The Art of Sscientific Computing, 2nd ed. Prentice Hall, London. |
Prudnikov, A. P., Brychkov, Y. A. and Marichev, O. I. (1986). Integrals and Series, vol. 1. Gordon and Breach Science Publishers, Amsterdam. |
Rodrigues, J., Cancho, V. G. and Castro, M. (2008) Teoria Unificada de Longa Duração. SINAPE, Associação Brasileira de Estatística, Universidade de São Paulo. |
Ross, G. J. S. and Preece, D. A. (1985). The negative binomial distribution. The Statistician 34, 323–336. |
Saha, K. and Paul, S. (2005). Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics 61, 179–185. |
Silva, G. O., Ortega, E. M. M., Cancho, V. G. and Barreto, M. L. (2008). Log-Burr XII regression models with censored data. Computational Statistics and Data Analysis 52, 3820–3842. |
Sun, J., Liao, Q. and Pagano, M. (1999). Regression analysis of doubly censored failure time data with applications to aids studies. Biometrics 55, 1, 909–914. |
Tournoud, M. and Ecochard, R. (2008). Promotion time models with time-changing exposure and heterogeneity: Application to infectious diseases. Biometrical Journal 50, 395–407. |
Tsodikov, A. D., Ibrahim, J. G. and Yakovlev, A. Y. (2003). Estimating cure rates from survival data: an alternative to two-component mixture models. Journal of the American Statistical Association 98, 1063–1078. |
Turnbull, W. (1976). The empirical distribution function with arbitrarily grouped censored and truncated data. Journal of the Royal Statistical Society B 38, 290–295. |
Yakovlev, A. Y. and Tsodikov, A. D. (1996). Stochastic Models of Tumor Latency and Their Biostatistical Applications. World Scientific, Singapore. |
Zhu, H. and Zhang, H. (2004). A diagnostic procedure based on local influence. Biometrika 91, 579–589. |