Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Influence of network topology on cooperative problem-solving systems (2016)

  • Authors:
  • USP affiliated authors: FONTANARI, JOSE FERNANDO - IFSC ; RODRIGUES, FRANCISCO APARECIDO - ICMC
  • USP Schools: IFSC; ICMC
  • DOI: 10.1007/s12064-015-0219-1
  • Subjects: REDES COMPLEXAS; TEORIA DOS GRAFOS; PROBABILIDADE
  • Keywords: Imitative learning; Group size; Social networks
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s12064-015-0219-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s12064-015-0219-1 (Fonte: Unpaywall API)

    Título do periódico: Theory in Biosciences

    ISSN: 1431-7613,1611-7530

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:
    Informações sobre o Citescore
  • Título: Theory in Biosciences

    ISSN: 1431-7613

    Citescore - 2017: 1.44

    SJR - 2017: 0.557

    SNIP - 2017: 0.832


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2758240-10PROD 2758240
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FONTANARI, José Fernando; RODRIGUES, Francisco Aparecido. Influence of network topology on cooperative problem-solving systems. Theory in Biosciences, Heidelberg, Springer, v. 135, n. 3, p. 101-110, 2016. Disponível em: < http://dx.doi.org/10.1007/s12064-015-0219-1 > DOI: 10.1007/s12064-015-0219-1.
    • APA

      Fontanari, J. F., & Rodrigues, F. A. (2016). Influence of network topology on cooperative problem-solving systems. Theory in Biosciences, 135( 3), 101-110. doi:10.1007/s12064-015-0219-1
    • NLM

      Fontanari JF, Rodrigues FA. Influence of network topology on cooperative problem-solving systems [Internet]. Theory in Biosciences. 2016 ; 135( 3): 101-110.Available from: http://dx.doi.org/10.1007/s12064-015-0219-1
    • Vancouver

      Fontanari JF, Rodrigues FA. Influence of network topology on cooperative problem-solving systems [Internet]. Theory in Biosciences. 2016 ; 135( 3): 101-110.Available from: http://dx.doi.org/10.1007/s12064-015-0219-1

    Referências citadas na obra
    Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97
    Axelrod R (1984) The evolution of cooperation. Basic Books, New York
    Axelrod R (1997) The dissemination of culture: a model with local convergence and global polarization. J Confl Res 41:203–226
    Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512
    Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113
    Barahona M, Pecora LM (2002) Synchronization in small-world systems. Phys Rev Lett 89:054101
    Barbosa LA, Fontanari JF (2009) Culture-area relation in Axelrod’s model for culture dissemination. Theor Biosci 128:205–210
    Barrat A, Barthelemy M, Vespignani A (2008) Dynamical processes on complex networks. Cambridge University Press, Cambridge
    Bloom H (2001) Global brain: the evolution of mass mind from the big bang to the 21st century. Wiley, New York
    Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: from natural to artificial systems. Oxford University Press, Oxford
    Clearwater SH, Huberman BA, Hogg T (1991) Cooperative solution of constraint satisfaction problems. Science 254:1181–1183
    Clune J, Mouret J-B, Lipson H (2013) The evolutionary origins of modularity. Proc R Soc B Biol Sci 280:20122863
    Derex M, Beugin M-P, Godelle B, Raymond M (2013) Experimental evidence for the influence of group size on cultural complexity. Nature 503:389–391
    Derrida B (1981) Random-energy model: an exactly solvable model of disordered systems. Phys Rev B 24:2613–2626
    Dunbar RIM (1992) Neocortex size as a constraint on group size in primates. J Hum Evol 22:469–493
    Englemore R, Morgan T (1988) Blackboard Sys. Addison- Wesley, New York
    Fontanari JF (2010) Social interaction as a heuristic for combinatorial optimization problems. Phys Rev E 82:056118
    Fontanari JF (2014) Imitative learning as a connector of collective brains. PLoS One 9:e110517
    Fontanari JF (2015) Exploring NK fitness landscapes using imitative learning. Eur Phys J B 88:251
    Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San Francisco
    Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826
    Gross T, Blasius B (2008) Adaptive coevolutionary networks: a review. J R Soc Interface 5:259–271
    Heyes CM (1994) Social learning in animals: categories and mechanisms. Biol Rev 69:207–231
    Hong L, Page SE (2004) Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proc Natl Acad Sci USA 101:16385–16389
    Huberman BA (1990) The performance of cooperative processes. Phys D 42:38–47
    Kauffman S, Levin S (1987) Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol 128:11–45
    Kaul H, Jacobson SH (2006) New global optima results for the Kauffman NK model: handling dependency. Math Program 108:475–494
    Kennedy J (1998) Thinking is social: experiments with the adaptive culture model. J Confl Res 42:56–76
    Kurvers RHJM, Krause J, Croft DP, Wilson ADM, Wolf M (2014) The evolutionary and ecological consequences of animal social networks: emerging issues. Trends Ecol Evol 29:326–335
    Laland KN, Atton N, Webster MM (2011) From fish to fashion: experimental and theoretical insights into the evolution of culture. Phil Trans R Soc B 366:958–968
    Laland KN, Williams K (1998) Social transmission of maladaptive information in the guppy. Behav Ecol 9:493–499
    Moffett MW (2011) Adventures among ants: a global safari with a cast of trillions. University of California Press, Oakland
    Pasquaretta C, Levé M, Claidière N, van de Waal E, Whiten A, MacIntosh AJJ, Pelé M, Bergstrom ML, Borgeaud C, Brosnan SF, Crofoot MC, Fedigan LM, Fichtel C, Hopper LM, Mareno MC, Petit O, Schnoell AV, di Sorrentino EP, Thierry B, Tiddi B, Sueur C (2014) Social networks in primates: smart and tolerant species have more efficient networks. Sci Rep 4:7600
    Peres LR, Fontanari JF (2011) The media effect in Axelrod’s model explained. Europhys Lett 96:38004
    Perra N, Gonçalves B, Pastor-Satorras R, Vespignani A (2012) Activity driven modeling of time varying networks. Sci Rep 2:469
    Queller DC, Strassmann JE (2009) Beyond society: the evolution of organismality. Philos Trans R Soc B 364:3143–3155
    Rendell L, Boyd R, Cownden D, Enquist M, Eriksson K, Feldman MW, Fogarty L, Ghirlanda S, Lillicrap T, Laland KN (2010) Why copy others? Insights from the social learning strategies tournament. Science 328:208–213
    Saakian DB, Fontanari JF (2009) Evolutionary dynamics on rugged fitness landscapes: exact dynamics and information theoretical aspects. Phys Rev E 80:041903
    Shibanai Y, Yasuno S, Ishiguro I (2001) Effects of global information feedback on diversity. J Confl Res 45:80–96
    Solow D, Burnetas A, Tsai M, Greenspan NS (2000) On the expected performance of systems with complex interactions among components. Complex Sys 12:423–456
    Waters JS, Fewell JH (2012) Information processing in social insect networks. PLoS One 7:e40337
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442
    Wilson E (1975) Sociobiology. Harvard University Press, Cambridge