Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Hyaluronidase decreases neutrophils infiltration to the inflammatory site (2016)

  • Authors:
  • USP affiliated authors: SORGI, CARLOS ARTERIO - FCFRP ; FARSKY, SANDRA HELENA POLISELLI - FCF ; SILVA, FRANCISCO WANDERLEY GARCIA DE PAULA E - FORP ; FACCIOLI, LUCIA HELENA - FCFRP
  • USP Schools: FCFRP; FCF; FORP; FCFRP
  • DOI: 10.1007/s00011-016-0935-0
  • Subjects: NEUTRÓFILOS; INFLAMAÇÃO; CITOCINAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00011-016-0935-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s00011-016-0935-0 (Fonte: Unpaywall API)

    Título do periódico: Inflammation Research

    ISSN: 1023-3830,1420-908X



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Inflammation Research

    ISSN: 1023-3830

    Citescore - 2017: 2.76

    SJR - 2017: 1.062

    SNIP - 2017: 0.863


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FRONZA, Marcio; MUHR, Cornélia; SILVEIRA, Denise Sayuri Calheiros da; et al. Hyaluronidase decreases neutrophils infiltration to the inflammatory site. Inflammation Research, Basel, p. 1-10, 2016. Disponível em: < http://dx.doi.org/10.1007/s00011-016-0935-0 > DOI: 10.1007/s00011-016-0935-0.
    • APA

      Fronza, M., Muhr, C., Silveira, D. S. C. da, Sorgi, C. A., Rodrigues, S. F. de P., Farsky, S. H. P., et al. (2016). Hyaluronidase decreases neutrophils infiltration to the inflammatory site. Inflammation Research, 1-10. doi:10.1007/s00011-016-0935-0
    • NLM

      Fronza M, Muhr C, Silveira DSC da, Sorgi CA, Rodrigues SF de P, Farsky SHP, Silva FWG de P e, Merfort I, Faccioli LH. Hyaluronidase decreases neutrophils infiltration to the inflammatory site [Internet]. Inflammation Research. 2016 ; 1-10.Available from: http://dx.doi.org/10.1007/s00011-016-0935-0
    • Vancouver

      Fronza M, Muhr C, Silveira DSC da, Sorgi CA, Rodrigues SF de P, Farsky SHP, Silva FWG de P e, Merfort I, Faccioli LH. Hyaluronidase decreases neutrophils infiltration to the inflammatory site [Internet]. Inflammation Research. 2016 ; 1-10.Available from: http://dx.doi.org/10.1007/s00011-016-0935-0

    Referências citadas na obra
    El-Safory NS, Fazary AE, Lee CK. Hyaluronidases, a group of glycosidases: current and future perspectives. Carbohydr Polym. 2010;81:165–81.
    Girish KS, Kemparaju K. Inhibition of Naja naja venom hyaluronidase by plant-derived bioactive components and polysaccharides. Biochemistry (Mosc). 2005;70:948–52.
    Girish KS, Kemparaju K. The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci. 2007;80(21):1921–43.
    Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon. 2013;62:75–82.
    Dunn AL, Heavner JE, Racz G, Day M. Hyaluronidase: a review of approved formulations, indications and off-label use in chronic pain management. Expert Opin Biol Ther. 2010;10:127–31.
    Kemparaju K, Girish KS. Snake venom hyaluronidase: a therapeutic target. Cell Biochem Funct. 2006;24(1):7–12.
    Ferguson EL, Roberts JL, Moseley R, Griffiths PC, Thomas DW. Evaluation of the physical and biological properties of hyaluronan and hyaluronan fragments. Int J Pharm. 2011;420(1):84–92.
    David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K, Pujol JP. Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen. 2008;16:274–87.
    Bitencourt CS, Pereira PA, Ramos SG, Sampaio SV, Arantes EC, Aronoff DM, Faccioli LH. Hyaluronidase recruits mesenchymal-like cells to the lung and ameliorates fibrosis. Fibrogenesis Tissue Repair. 2011. doi: 10.1186/1755-1536-4-3 .
    Bourguignon LY, Wong G, Earle CA, Xia W. Interaction of low molecular weight hyaluronan with CD44 and toll-like receptors promotes the actin filament-associated protein 110-actin binding and MyD88-NFκB signaling leading to proinflammatory cytokine/chemokine production and breast tumor invasion. Cytoskeleton (Hoboken). 2011;68:671–93.
    Sidgwick GP, Iqbal SA, Bayat A. Altered expression of hyaluronan synthase and hyaluronidase mRNA may affect hyaluronic acid distribution in keloid disease compared with normal skin. Exp Dermatol. 2013;22(5):377–9.
    Fronza M, Caetano GF, Leite MN, Bitencourt CS, Paula-Silva FW, Andrade TA, Frade MA, Merfort I, Faccioli LH. Hyaluronidase modulates inflammatory response and accelerates the cutaneous wound healing. PLoS One. 2014. doi: 10.1371/journal.pone.0112297 .
    Huang Z, Zhao C, Chen Y, Cowell JA, Wei G, Kultti A, Huang L, Thompson CB, Rosengren S, Frost GI, Shepard HM. Recombinant human hyaluronidase PH20 does not stimulate an acute inflammatory response and inhibits lipopolysaccharide-induced neutrophil recruitment in the air pouch model of inflammation. J Immunol. 2014;192(11):5285–95.
    Sacca R, Cuff CA, Ruddle NH. Mediators of inflammation. Curr Opin Immunol. 1997;9(6):851–7.
    Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010;28:321–42.
    Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.
    Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford). 2010;49(9):1618–31.
    Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 2003;24(1):25–9.
    Faccioli LH, Nourshargh S, Moqbel R, Williams FM, Sehmi R, Kay AB, Williams TJ. The accumulation of 111In-eosinophils induced by inflammatory mediators, in vivo. Immunology. 1991;73(2):222–7.
    Medeiros AI, Silva CL, Malheiro A, Maffei CM, Faccioli LH. Leukotrienes are involved in leukocyte recruitment induced by live Histoplasma capsulatum or by the beta-glucan present in their cell wall. Br J Pharmacol. 1999;128(7):1529–37.
    Flamand N, Mancuso P, Serezani CH, Brock TG. Leukotrienes: mediators that have been typecast as villains. Cell Mol Life Sci. 2007;64:2657–70.
    Henderson WR Jr. The role of leukotrienes in inflammation. Ann Intern Med. 1994;121(9):684–97.
    Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.
    Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159–75.
    Aoki T, Narumiya S. Prostaglandins and chronic inflammation. Trends Pharmacol Sci. 2012;33:304–11.
    McDonald B, McAvoy EF, Lam F, Gill V, de la Motte C, Savani RC, Kubes P. Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J Exp Med. 2008;205(4):915–27.
    Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40:463–75.
    Hack CE, Zeerleder S. The endothelium in sepsis: source of and a target for inflammation. Crit Care Med. 2001;29:S21–7.
    Duarte DB, Vasko MR, Fehrenbacher JC. Models of inflammation: carrageenan air pouch. Curr Protoc Pharmacol. 2012. doi: 10.1002/0471141755 .
    Edwards JC, Sedgwick AD, Willoughby DA. The formation of a structure with the features of synovial lining by subcutaneous injection of air: an in vivo tissue culture system. J Pathol. 1981;134(2):147–56.
    Rodrigues SF, Granger DN. Blood cells and endothelial barrier function. Tissue Barriers. 2015. doi: 10.4161/21688370.2014.978720 .
    Barioni ED, Santin JR, Machado ID, Rodrigues SF, Ferraz-de-Paula V, Wagner TM, Cogliati B, Corrêa Dos Santos M, Machado Mda S, de Andrade SF, Niero R, Farsky SH. Achyrocline satureioides (Lam.) D.C. hydroalcoholic extract inhibits neutrophil functions related to innate host defense. Evid Based Complement Alternat Med. 2013. doi: 10.1155/2013/787916 .
    Verri WA Jr, Souto FO, Vieira SM, Almeida SC, Fukada SY, Xu D, Alves-Filho JC, Cunha TM, Guerrero AT, Mattos-Guimaraes RB, Oliveira FR, Teixeira MM, Silva JS, McInnes IB, Ferreira SH, Louzada-Junior P, Liew FY, Cunha FQ. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann Rheum Dis. 2010;69(9):1697–703.
    Hwang SY, Kim JY, Kim KW, Park MK, Moon Y, Kim WU, Kim HY. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther. 2004;6(2):R120–8.
    Troughton PR, Platt R, Bird H, el-Manzalawi E, Bassiouni M, Wright V. Synovial fluid interleukin-8 and neutrophil function in rheumatoid arthritis and seronegative polyarthritis. Br J Rheumatol. 1996;35(12):1244–51.
    Chen M, Lam BK, Kanaoka Y, Nigrovic PA, Audoly LP, Austen KF, Lee DM. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J Exp Med. 2006;203:837–42.
    Elmgreen J, Nielsen OH, Ahnfelt-Rønne I. Enhanced capacity for release of leucotriene B4 by neutrophils in rheumatoid arthritis. Ann Rheum Dis. 1987;46(7):501–5.
    Mendes MT, Silveira PF. The interrelationship between leukotriene B4 and leukotriene-A4-hydrolase in collagen/adjuvant-induced arthritis in rats. Biomed Res Int. 2014. doi: 10.1155/2014/730421 .
    Tudan C, Jackson JK, Blanis L, Pelech SL, Burt HM. Inhibition of TNF-alpha-induced neutrophil apoptosis by crystals of calcium pyrophosphate dihydrate is mediated by the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways up-stream of caspase 3. J Immunol. 2000;165(10):5798–806.
    Adkison AM, Raptis SZ, Kelley DG, Pham CT. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest. 2002;109:363–71.
    Alten R, Gromnica-Ihle E, Pohl C, Emmerich J, Steffgen J, Roscher R, Sigmund R, Schmolke B, Steinmann G. Inhibition of leukotriene B4-induced CD11B/CD18 (Mac-1) expression by BIIL 284, a new long acting LTB4 receptor antagonist, in patients with rheumatoid arthritis. Ann Rheum Dis. 2004;63:170–6.
    Crooks SW, Bayley DL, Hill SL, Stockley RA. Bronchial inflammation in acute bacterial exacerbations of chronic bronchitis: the role of leukotriene B4. Eur Respir J. 2000;15(2):274–80.
    Folco G, Rossoni G, Buccellati C, Berti F, Maclouf J, Sala A. Leukotrienes in cardiovascular diseases. Am J Respir Crit Care Med. 2000;161:S112–6.
    O’Byrne PM. Leukotrienes in the pathogenesis of asthma. Chest. 1997;111(2 Suppl):27S–34S.
    Steele VE, Holmes CA, Hawk ET, Kopelovich L, Lubet RA, Crowell JA, Sigman CC, Kelloff GJ. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomarkers Prev. 1999;8(5):467–83.
    Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol. 1999;277:H508–14.
    Cabrales P, Vázquez BY, Tsai AG, Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol. 1985;2007(102):2251–9.
    Van den Berg BM, Vink H, Spaan JA. The endothelial glycocalyx protects against myocardial edema. Circ Res. 2003;92(6):592–4.
    Finsterbusch M, Voisin MB, Beyrau M, Williams TJ, Nourshargh S. Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF. J Exp Med. 2014;211:1307–14.
    Johnsson C, Hällgren R, Elvin A, Gerdin B, Tufveson G. Hyaluronidase ameliorates rejection-induced edema. Transpl Int. 1999;12(4):235–43.
    Johnsson C, Hällgren R, Tufveson G. Hyaluronidase can be used to reduce interstitial edema in the presence of heparin. J Cardiovasc Pharmacol Ther. 2000;5(3):229–36.
    Yipp BG, Andonegui G, Howlett CJ, Robbins SM, Hartung T, Ho M, Kubes P. Profound differences in leukocyte-endothelial cell responses to lipopolysaccharide versus lipoteichoic acid. J Immunol. 2002;168(9):4650–8.
    Hakansson L, Venge P. The combined action of hyaluronic acid and fibronectin stimulates neutrophil migration. J Immunol. 1985;135(4):2735–9.
    Khan AI, Kerfoot SM, Heit B, Liu L, Andonegui G, Ruffell B, Johnson P, Kubes P. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173(12):7594–601.