Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Application of moderate deviation techniques to Prove Sinai theorem on RWRE (2015)

  • Authors:
  • USP affiliated authors: FREIRE, MARCELO VENTURA - EACH
  • USP Schools: EACH
  • DOI: 10.1007/s10955-015-1266-1
  • Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10955-015-1266-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10955-015-1266-1 (Fonte: Unpaywall API)

    Título do periódico: Journal of Statistical Physics

    ISSN: 0022-4715,1572-9613



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Statistical Physics

    ISSN: 0022-4715

    Citescore - 2017: 1.45

    SJR - 2017: 0.93

    SNIP - 2017: 0.997


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FREIRE, Marcelo Ventura. Application of moderate deviation techniques to Prove Sinai theorem on RWRE. Journal of Statistical Physics, New York, v. 160, n. 2, p. 357-370, 2015. Disponível em: < http://dx.doi.org/10.1007/s10955-015-1266-1 > DOI: 10.1007/s10955-015-1266-1.
    • APA

      Freire, M. V. (2015). Application of moderate deviation techniques to Prove Sinai theorem on RWRE. Journal of Statistical Physics, 160( 2), 357-370. doi:10.1007/s10955-015-1266-1
    • NLM

      Freire MV. Application of moderate deviation techniques to Prove Sinai theorem on RWRE [Internet]. Journal of Statistical Physics. 2015 ; 160( 2): 357-370.Available from: http://dx.doi.org/10.1007/s10955-015-1266-1
    • Vancouver

      Freire MV. Application of moderate deviation techniques to Prove Sinai theorem on RWRE [Internet]. Journal of Statistical Physics. 2015 ; 160( 2): 357-370.Available from: http://dx.doi.org/10.1007/s10955-015-1266-1

    Referências citadas na obra
    Andreoletti, P.: Alternative proof for the localization of Sinai’s walk. J. Stat. Phys. 118(5–6), 883–933 (2005). doi: 10.1007/s10955-004-2122-x
    Andreoletti, P.: On the concentration of Sinai’s walk. Stoch. Process. Appl. 116(10), 1377–1408 (2006). doi: 10.1016/j.spa.2004.12.008
    Andreoletti, P.: Almost sure estimates for the concentration neighborhood of Sinais walk. Stoch. Process. Appl. 117(10), 1473–1490 (2007). doi: 10.1016/j.spa.2007.02.002
    Berkes, I., Liu, W., Wu, W.B.: Komlós-Major-Tusnády approximation under dependence. Ann. Probab. 42(2), 794–817 (2014). doi: 10.1214/13-AOP850
    Brox, T.: A one-dimensional diffusion process in a Wiener medium. Ann. Probab. 14(4), 1206–1218 (1986)
    Comets, F., Menshikov, M., Popov, S.: Lyapunov functions for random walks and strings in random environment. Ann. Probab. 26(4), 1433–1445 (1998)
    Comets, F., Popov, S.: Limit law for transition probabilities and moderated deviations for Sinai’s random walk in random environment. Probab. Theory Relat. Fields 126, 571–609 (2003)
    Golosov, A.O.: Localization of random walks in one-dimensional random environment. Commun. Math. Phys. 92, 491–506 (1984)
    Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums of independent RV’s and the sample DF. I. Zeit. Wahrsch. verw. Geb. 32, 111–131 (1975)
    Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums of independent RV’s and the sample DF. II. Zeit. Wahrsch. verw. Geb. 34, 33–58 (1976)
    Mathieu, P.: Zero White Noise Limit through Dirichlet forms, with application to diffusions in random medium. Probab. Theory Relat. Fields 99, 549–580 (1994)
    Sinai, Y.G.: The limiting behavior of one-dimensional random walk in random medium. Theory Probab. Appl. 27, 256–268 (1982)
    Solomon, F.: Random walks in random environments. Ann. Probab. 3, 1–31 (1975)
    Zeitouni, O.: Random walk in random environment. In: Picard, J. (ed.) Lectures on Probability Theory and Statistics. Ecole d’Eté de Probabilité de Saint-Flour XXXI, Lecture Notes in Mathematics, vol. 1837, pp. 190–312. Springer, Berlin (2004)