Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Mining unstructured content for recommender systems: an ensemble approach (2016)

  • Authors:
  • USP affiliated authors: MANZATO, MARCELO GARCIA - ICMC ; REZENDE, SOLANGE OLIVEIRA - ICMC ; PIMENTEL, MARIA DA GRAÇA CAMPOS - ICMC
  • USP Schools: ICMC; ICMC; ICMC
  • DOI: 10.1007/s10791-016-9280-8
  • Subjects: INTELIGÊNCIA ARTIFICIAL; APRENDIZADO COMPUTACIONAL; MINERAÇÃO DE DADOS; RECONHECIMENTO DE TEXTO; WORLD WIDE WEB
  • Keywords: Recommender systems; Ensemble learning; Personalized ranking; Metadata awareness; Unstructured content
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10791-016-9280-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s10791-016-9280-8 (Fonte: Unpaywall API)

    Título do periódico: Information Retrieval Journal

    ISSN: 1386-4564,1573-7659



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Information Retrieval

    ISSN: 1386-4564

    Citescore - 2017: 2.18

    SJR - 2017: 0.352

    SNIP - 2017: 1.508


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2763540-10PROD-2763540
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MANZATO, Marcelo Garcia; DOMINGUES, Marcos A; FORTES, Arthur C; et al. Mining unstructured content for recommender systems: an ensemble approach. Information Retrieval Journal, Dordrecht, Springer, v. 19, n. 4, p. 378-415, 2016. Disponível em: < http://dx.doi.org/10.1007/s10791-016-9280-8 > DOI: 10.1007/s10791-016-9280-8.
    • APA

      Manzato, M. G., Domingues, M. A., Fortes, A. C., Sundermann, C. V., D'Addio, R. M., Conrado, M. S., et al. (2016). Mining unstructured content for recommender systems: an ensemble approach. Information Retrieval Journal, 19( 4), 378-415. doi:10.1007/s10791-016-9280-8
    • NLM

      Manzato MG, Domingues MA, Fortes AC, Sundermann CV, D'Addio RM, Conrado MS, Rezende SO, Pimentel M da GC. Mining unstructured content for recommender systems: an ensemble approach [Internet]. Information Retrieval Journal. 2016 ; 19( 4): 378-415.Available from: http://dx.doi.org/10.1007/s10791-016-9280-8
    • Vancouver

      Manzato MG, Domingues MA, Fortes AC, Sundermann CV, D'Addio RM, Conrado MS, Rezende SO, Pimentel M da GC. Mining unstructured content for recommender systems: an ensemble approach [Internet]. Information Retrieval Journal. 2016 ; 19( 4): 378-415.Available from: http://dx.doi.org/10.1007/s10791-016-9280-8

    Referências citadas na obra
    Aggarwal, C. C., & Zhai, C. X. (2012). Mining Text Data. Incorporated: Springer Publishing Company.
    Bar, A., Rokach, L., Shani, G., Shapira, B., & Schclar, A. (2013). Improving simple collaborative filtering models using ensemble methods. Multiple Classifier Systems, Lecture Notes in Computer Science, vol 7872, Springer Berlin Heidelberg pp. 1–12.
    Bobadilla, J., Ortega, F., Hernando, A., & GutiéRrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109–132.
    Breese, J. S., Heckerman, D., Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 43–52.
    Cantador, I., Brusilovsky, P., Kuflik, T. (2011). 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th ACM conference on Recommender systems, ACM, New York, NY, USA, RecSys ’11.
    Cardoso, N. (2012) Rembrandt-a named-entity recognition framework. In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC’12), pp. 1240–1243.
    Conrado, M. S., Rossi, R. G., Pardo, T. A. S., & Rezende, S. O. (2013). Applying transductive learning for automatic term extraction: The case of the ecology domain. In: Proceedings of the IEEE 2nd INT CNF on informatics and applications (ICIA) Lodz, Poland, pp. 264–269.
    Conrado, M. S., Di Felippo, A., Pardo, T. A. S., & Rezende, S. O. (2014). A survey of automatic term extraction for Brazilian Portuguese. Journal of the Brazilian Computer Society (JBCS), 20(1), 12.
    D’Addio, R. M., Conrado, M., Resende, S., Manzato, M. G. (2014). Generating recommendations based on robust term extraction from users’ reviews. In: Proceedings of the 20th Brazilian Symposium on Multimedia and the Web, WebMedia 2014, João Pessoa, Brazil, November 18-21, 2014, pp 55–58.
    Desrosiers, C., & Karypis, G. (2011). A comprehensive survey of neighborhood-based recommendation methods. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender Systems Handbook (pp. 107–144). New York: Springer. doi: 10.1007/978-0-387-85820-3_4 .
    Domingues, M. A., Sundermann, C. V., Manzato, M. G., Marcacini, R. M., & Rezende, S. O. (2014). Exploiting text mining techniques for contextual recommendations. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Warsaw, Poland, August 11-14, 2014—volume I, pp. 210–217.
    Domingues, M. A., Sundermann, C. V., Barros, F., Manzato, M. G., Pimentel, M. G. C., Rezende, S. O., & Oliveira, S. (2015). Applying multi-view based metadata in personalized ranking for recommender systems. In: Proceedings of the 30th ACM/SIGAPP Symposium On Applied Computing, pp. 1105–1107.
    Finkel, J. R., Grenager, T., Manning, C. (2005). Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics, Stroudsburg, PA, USA, ACL ’05, pp 363–370, doi: 10.3115/1219840.1219885 .
    Gantner, Z., Drumond, L., Freudenthaler, C., Rendle, S., Schmidt-Thieme, L. (2010). Learning attribute-to-feature mappings for cold-start recommendations. In: 2010 IEEE 10th international conference on data mining (ICDM), pp. 176–185.
    Ganu, G., Kakodkar, Y., & Marian, A. (2013). Improving the quality of predictions using textual information in online user reviews. Information Systems, 38(1), 1–15.
    Hariri, N., Mobasher, B., Burke, R., & Zheng, Y. (2011). Context-aware recommendation based on review mining. In: Proceedings of the 9th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems, ITWP ’11, pp. 1–7.
    Jahrer, M., Töscher, A., Legenstein, R. (2010). Combining predictions for accurate recommender systems. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, KDD ’10, pp. 693–702.
    Kim, H., Han, K., Yi, M., Cho, J., & Hong, J. (2012). Moviemine: Personalized movie content search by utilizing user comments. IEEE Transactions on Consumer Electronics, 58(4), 1416–1424.
    Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD ’08, pp. 426–434.
    Koren, Y. (2010). Factor in the neighbors: Scalable and accurate collaborative filtering. ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1), 1:1–1:24.
    Korkontzelos, I., Klapaftis, I. P., Manandhar, S. (2008). Reviewing and evaluating automatic term recognition techniques. In: Nordström B, Ranta A (eds) Proceedings of the 6th international conference on advances in natural language processing, Springer-Verlag, Berlin, Heidelberg, Lecture Notes in Computer Science, vol 5221, pp. 248–259.
    Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the eighteenth international conference on machine learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ICML ’01, pp. 282–289, http://dl.acm.org/citation.cfm?id=645530.655813 .
    Li, Y., Nie, J., Zhang, Y., Wang, B., Yan, B., & Weng, F. (2010). Contextual recommendation based on text mining. In: Proceedings of the 23rd international conference on computational linguistics: Posters, COLING ’10, pp. 692–700.
    Lops, P., de Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender Systems Handbook (pp. 73–105). New York: Springer. doi: 10.1007/978-0-387-85820-3_3 .
    Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. New York, NY, USA: Cambridge University Press.
    Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. (2014). The stanford corenlp natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, pp. 55–60.
    Manzato, M. G., Domingues, M. A., Marcacini, R. M., & Rezende, S. O. (2014). Improving personalized ranking in recommender systems with topic hierarchies and implicit feedback. In: 22nd international conference on pattern recognition, ICPR 2014, Stockholm, Sweden, August 24–28, 2014, pp. 3696–3701.
    Marcacini, R. M., Hruschka, E. R., Rezende, S. O. (2012). On the use of consensus clustering for incremental learning of topic hierarchies. In: Proceedings of the 21st Brazilian conference on Advances in Artificial Intelligence, Springer, Berlin, Heidelberg, SBIA’12, pp. 112–121.
    Mikheev, A., Moens, M., & Grover, C. (1999). Named Entity Recognition without Gazetteers. EACL ’99: Proceedings of the Ninth Conference on European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, pp. 1–8.
    Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.
    Nothman, J., Ringland, N., Radford, W., Murphy, T., & Curran, J. R. (2013). Learning multilingual named entity recognition from wikipedia. Artificial Intelligence, 194, 151–175.
    Porter, M. F. (1997) Readings in information retrieval. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, chap An Algorithm for Suffix Stripping, pp. 313–316. http://dl.acm.org/citation.cfm?id=275537.275705 .
    Qumsiyeh, R., Ng, Y. K. (2012). Predicting the ratings of multimedia items for making personalized recommendations. In: Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval, New York, NY, USA, SIGIR ’12, pp. 475–484.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L. (2009). BPR: bayesian personalized ranking from implicit feedback. In UAI ’09 Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pp. 452–461.
    Ricci, F., Rokach, L., Shapira, B. (2011). Introduction to recommender systems handbook. In: Ricci F, Rokach L, Shapira B, Kantor PB (eds) Recommender Systems Handbook, Springer US, pp. 1–35, doi: 10.1007/978-0-387-85820-3_1 .
    Ristoski, P., Loza Mencía, E., & Paulheim, H. (2014). A hybrid multi-strategy recommender system using linked open data. In A. Tordai, V. Presutti, M. Stankovic, E. Cambria, I. Cantador, A. Di Iorio, T. Di Noia, C. Lange, & D. Reforgiato Recupero (Eds.), Semantic web evaluation challenge, communications in computer and information science (Vol. 475, pp. 150–156). New York: Springer International Publishing.
    Sekine, S. (2004). Named entity: History and future. http://cs.nyu.edu/~sekine/papers/NEsurvey200402 .
    Semeraro, G., Lops, P., Basile, P., de Gemmis, M. (2009). Knowledge infusion into content-based recommender systems. In: Proceedings of the third ACM conference on recommender systems, ACM, New York, NY, USA, RecSys ’09, pp. 301–304.
    Socher, R., Bauer, J., Manning, C. D., Ng, A. Y. (2013). Parsing with compositional vector grammars. In Proceedings of the 51st annual meeting of the association for computational linguistics, ACL 2013, 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, pp. 455–465.