Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Antidepressant-like effects induced by NMDA receptor blockade and NO synthesis inhibition in the ventral medial prefrontal cortex of rats exposed to the forced swim test (2015)

  • Authors:
  • USP affiliated authors: JOCA, SÂMIA REGIANE LOURENÇO - FCFRP
  • USP Schools: FCFRP
  • DOI: 10.1007/s00213-014-3853-2
  • Subjects: ANTIDEPRESSIVOS; GLUTAMATOS; ÓXIDO NÍTRICO; CÓRTEX PRÉ-FRONTAL; ESTRESSE
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00213-014-3853-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00213-014-3853-2 (Fonte: Unpaywall API)

    Título do periódico: Psychopharmacology

    ISSN: 0033-3158,1432-2072



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Psychopharmacology

    ISSN: 0033-3158

    Citescore - 2017: 3.05

    SJR - 2017: 1.494

    SNIP - 2017: 0.872


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FCFRP2768876pcd^2768876^Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PEREIRA, Vitor Silva; ROMANO, Angélica; WEGENER, Gregers; JOCA, Sâmia Regiane Lourenço. Antidepressant-like effects induced by NMDA receptor blockade and NO synthesis inhibition in the ventral medial prefrontal cortex of rats exposed to the forced swim test. Psychopharmacology, Heidelberg, v. 232, n. 13, p. 2263-2273, 2015. Disponível em: < http://dx.doi.org/10.1007/s00213-014-3853-2 > DOI: 10.1007/s00213-014-3853-2.
    • APA

      Pereira, V. S., Romano, A., Wegener, G., & Joca, S. R. L. (2015). Antidepressant-like effects induced by NMDA receptor blockade and NO synthesis inhibition in the ventral medial prefrontal cortex of rats exposed to the forced swim test. Psychopharmacology, 232( 13), 2263-2273. doi:10.1007/s00213-014-3853-2
    • NLM

      Pereira VS, Romano A, Wegener G, Joca SRL. Antidepressant-like effects induced by NMDA receptor blockade and NO synthesis inhibition in the ventral medial prefrontal cortex of rats exposed to the forced swim test [Internet]. Psychopharmacology. 2015 ; 232( 13): 2263-2273.Available from: http://dx.doi.org/10.1007/s00213-014-3853-2
    • Vancouver

      Pereira VS, Romano A, Wegener G, Joca SRL. Antidepressant-like effects induced by NMDA receptor blockade and NO synthesis inhibition in the ventral medial prefrontal cortex of rats exposed to the forced swim test [Internet]. Psychopharmacology. 2015 ; 232( 13): 2263-2273.Available from: http://dx.doi.org/10.1007/s00213-014-3853-2

    Referências citadas na obra
    Abel EL, Bilitzke PJ (1990) A possible alarm substance in the forced swimming test. Physiol Behav 48:233–239
    Aguiar DC, Guimaraes FS (2011) Blockade of NMDA or NO in the dorsal premammillary nucleus attenuates defensive behaviors. Physiol Behav 103:279–283
    Aguiar DC, Moreira FA, Guimaraes FS (2006) Flight reactions induced by injection of glutamate N-methyl-d-aspartate receptor agonist into the rat dorsolateral periaqueductal gray are not dependent on endogenous nitric oxide. Pharmacol Biochem Behav 83:296–301
    Alt A, Nisenbaum ES, Bleakman D, Witkin JM (2006) A role for AMPA receptors in mood disorders. Biochem Pharmacol 71:1273–1288
    Alves FH, Crestani CC, Resstel LB, Correa FM (2009) Bed nucleus of the stria terminalis N-methyl-d-aspartate receptors and nitric oxide modulate the baroreflex cardiac component in unanesthetized rats. J Neurosci Res 87:1703–1711
    Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365–371
    Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature
    Bale TL (2006) Stress sensitivity and the development of affective disorders. Horm Behav 50:529–533
    Borda T, Genaro A, Sterin-Borda L, Cremaschi G (1998) Involvement of endogenous nitric oxide signalling system in brain muscarinic acetylcholine receptor activation. J Neural Transm 105:193–204
    Braga AA, Aguiar DC, Guimaraes FS (2009) NOC-9, a selective nitric oxide donor, induces flight reactions in the dorsolateral periaqueductal gray of rats by activating soluble guanylate cyclase. Neurosci Lett 459:79–83
    Busnardo C, Alves FH, Crestani CC, Scopinho AA, Resstel LB, Correa FM (2012) Paraventricular nucleus of the hypothalamus glutamate neurotransmission modulates autonomic, neuroendocrine and behavioral responses to acute restraint stress in rats. Eur Neuropsychopharmacol 23(11):1611–1622
    Calabrese F, Molteni R, Racagni G, Riva MA (2009) Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology 34(Suppl 1):S208–S216
    Catarzi D, Colotta V, Varano F (2007) Competitive AMPA receptor antagonists. Med Res Rev 27(2):239–278
    Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274:27467–27473
    Czeh B, Perez-Cruz C, Fuchs E, Flugge G (2008) Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: does hemisphere location matter? Behav Brain Res 190:1–13
    Dhir A, Kulkarni SK (2011) Nitric oxide and major depression. Nitric Oxide 24:125–131
    Florenzano F, Viscomi MT, Amadio S, D’Ambrosi N, Volonte C, Molinari M (2008) Do ATP and NO interact in the CNS? Prog Neurobiol 84:40–56
    Frazer A, Morilak DA (2005) What should animal models of depression model? Neurosci Biobehav Rev 29:515–523
    Garthwaite J, Garthwaite G, Palmer RM, Moncada S (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol 172:413–416
    Gigliucci V, Buckley KN, Nunan J, O’Shea K, Harkin A (2010) A role for serotonin in the antidepressant activity of NG-nitro-l-arginine, in the rat forced swimming test. Pharmacol Biochem Behav 94:524–533
    Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152
    Harkin A, Connor TJ, Walsh M, St John N, Kelly JP (2003) Serotonergic mediation of the antidepressant-like effects of nitric oxide synthase inhibitors. Neuropharmacology 44:616–623
    Harmer CJ, Goodwin GM, Cowen PJ (2009) Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry 195:102–108
    Harvey BH, Oosthuizen F, Brand L, Wegener G, Stein DJ (2004) Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus. Psychopharmacology (Berlin) 175:494–502
    Hasler G (2010) Pathophysiology of depression: do we have any solid evidence of interest to clinicians? World Psychiatry 9:155–161
    Heiberg IL, Wegener G, Rosenberg R (2002) Reduction of cGMP and nitric oxide has antidepressant-like effects in the forced swimming test in rats. Behav Brain Res 134:479–484
    Heidbreder CA, Groenewegen HJ (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 27:555–579
    Ibrahim L, Diazgranados N, Franco-Chaves J, Brutsche N, Henter ID, Kronstein P, Moaddel R, Wainer I, Luckenbaugh DA, Manji HK, Zarate CA Jr (2012) Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 37:1526–1533
    Jefferys D, Funder J (1996) Nitric oxide modulates retention of immobility in the forced swimming test in rats. Eur J Pharmacol 295:131–135
    Joca SR, Guimaraes FS (2006) Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology (Berlin) 185:298–305
    Kemp AH, Hopkinson PJ, Hermens DF, Rowe DL, Sumich AL, Clark CR, Drinkenburg W, Abdi N, Penrose R, McFarlane A, Boyce P, Gordon E, Williams LM (2009) Fronto-temporal alterations within the first 200 ms during an attentional task distinguish major depression, non-clinical participants with depressed mood and healthy controls: a potential biomarker? Hum Brain Mapp 30:602–614
    Koenigs M, Grafman J (2009) The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 201:239–243
    Koike H, Iijima M, Chaki S (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res 224:107–111
    Krass M, Wegener G, Vasar E, Volke V (2010) The antidepressant action of imipramine and venlafaxine involves suppression of nitric oxide synthesis. Behav Brain Res
    Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902
    Li YF, Zhang YZ, Liu YQ, Wang HL, Cao JB, Guan TT, Luo ZP (2006) Inhibition of N-methyl-D-aspartate receptor function appears to be one of the common actions for antidepressants. J Psychopharmacol 20:629–635
    Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964
    Lisboa SF, Stecchini MF, Correa FM, Guimaraes FS, Resstel LB (2010) Different role of the ventral medial prefrontal cortex on modulation of innate and associative learned fear. Neuroscience 171:760–768
    Machado-Vieira R, Ibrahim L, Henter ID, Zarate CA Jr (2012) Novel glutamatergic agents for major depressive disorder and bipolar disorder. Pharmacol Biochem Behav 100:678–687
    Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352
    Maier SF, Watkins LR (2010) Role of the medial prefrontal cortex in coping and resilience. Brain Res 1355:52–60
    Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7:541–547
    McArthur R, Borsini F (2006) Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav 84:436–452
    Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1657
    Nations KR, Dogterom P, Bursi R, Schipper J, Greenwald S, Zraket D, Gertsik L, Johnstone J, Lee A, Pande Y, Ruigt G, Ereshefsky L (2012) Examination of Org 26576, an AMPA receptor positive allosteric modulator, in patients diagnosed with major depressive disorder: an exploratory, randomized, double-blind, placebo-controlled trial. J Psychopharmacol
    Naylor GJ, Smith AH, Connelly P (1987) A controlled trial of methylene blue in severe depressive illness. Biol Psychiatry 22:657–659
    Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25
    Nowak G, Trullas R, Layer RT, Skolnick P, Paul IA (1993) Adaptive changes in the N-methyl-d-aspartate receptor complex after chronic treatment with imipramine and 1-aminocyclopropanecarboxylic acid. J Pharmacol Exp Ther 265:1380–1386
    Ongur D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219
    Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Academic Press, London
    Pereira VS, Casarotto PC, Hiroaki-Sato VA, Sartim AG, Guimaraes FS, Joca SR (2013) Antidepressant- and anticompulsive-like effects of purinergic receptor blockade: involvement of nitric oxide. Eur Neuropsychopharmacol
    Pittaluga A, Raiteri L, Longordo F, Luccini E, Barbiero VS, Racagni G, Popoli M, Raiteri M (2007) Antidepressant treatments and function of glutamate ionotropic receptors mediating amine release in hippocampus. Neuropharmacology 53:27–36
    Popoli M, Yan Z, McEwen BS, Sanacora G (2012) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22–37
    Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336
    Price JL, Drevets WC (2009) Neurocircuitry of mood disorders. Neuropsychopharmacology
    Quirk GJ, Garcia R, Gonzalez-Lima F (2006) Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 60:337–343
    Rameau GA, Chiu LY, Ziff EB (2003) NMDA receptor regulation of nNOS phosphorylation and induction of neuron death. Neurobiol Aging 24:1123–1133
    Resstel LB, Correa FM (2006) Injection of l-glutamate into medial prefrontal cortex induces cardiovascular responses through NMDA receptor–nitric oxide in rat. Neuropharmacology 51:160–167
    Resstel LB, Joca SR, Guimaraes FG, Correa FM (2006) Involvement of medial prefrontal cortex neurons in behavioral and cardiovascular responses to contextual fear conditioning. Neuroscience 143:377–385
    Resstel LB, Souza RF, Guimaraes FS (2008) Anxiolytic-like effects induced by medial prefrontal cortex inhibition in rats submitted to the Vogel conflict test. Physiol Behav 93:200–205
    Rocher C, Spedding M, Munoz C, Jay TM (2004) Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb Cortex 14:224–229
    Sanacora G, Gueorguieva R, Epperson CN, Wu YT, Appel M, Rothman DL, Krystal JH, Mason GF (2004) Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 61:705–713
    Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:63–77
    Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848
    Scopinho AA, Scopinho M, Lisboa SF, Correa FM, Guimaraes FS, Joca SR (2010) Acute reversible inactivation of the ventral medial prefrontal cortex induces antidepressant-like effects in rats. Behav Brain Res 214:437–442
    Shahani N, Sawa A (2011) Nitric oxide signaling and nitrosative stress in neurons: role for S-nitrosylation. Antioxid Redox Signal 14:1493–1504
    Skolnick P, Layer RT, Popik P, Nowak G, Paul IA, Trullas R (1996) Adaptation of N-methyl-d-aspartate (NMDA) receptors following antidepressant treatment: implications for the pharmacotherapy of depression. Pharmacopsychiatry 29:23–26
    Tavares RF, Resstel LB, Correa FM (2007) Interaction between glutamatergic and nitrergic mechanisms mediating cardiovascular responses to l-glutamate injection in the diagonal band of Broca in anesthetized rats. Life Sci 81:855–862
    Tonetto LL, Terzian AL, Del Bel EA, Guimaraes FS, Resstel LB (2009) Inhibition of the NMDA receptor/nitric oxide pathway in the dorsolateral periaqueductal gray causes anxiolytic-like effects in rats submitted to the Vogel conflict test. Behav Brain Funct 5:40
    Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185:1–10
    Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58
    Vertes RP (2006) Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 142:1–20
    Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728–733
    Vincent SR (2010) Nitric oxide neurons and neurotransmission. Prog Neurobiol 90:246–255
    Voleti B, Navarria A, Liu RJ, Banasr M, Li N, Terwilliger R, Sanacora G, Eid T, Aghajanian G, Duman RS (2013) Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry
    Wegener G, Volke V (2010) Nitric oxide synthase inhibitors as antidepressants. Pharmaceuticals 3:26
    Wurtman RJ (2005) Genes, stress, and depression. Metabolism 54:16–19
    Yildiz F, Erden BF, Ulak G, Utkan T, Gacar N (2000) Antidepressant-like effect of 7-nitroindazole in the forced swimming test in rats. Psychopharmacology (Berlin) 149:41–44
    Zarate CA Jr, Du J, Quiroz J, Gray NA, Denicoff KD, Singh J, Charney DS, Manji HK (2003) Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci 1003:273–291
    Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864
    Zhang GF, Wang N, Shi JY, Xu SX, Li XM, Ji MH, Zuo ZY, Zhou ZQ, Yang JJ (2013) Inhibition of the l-arginine-nitric oxide pathway mediates the antidepressant effects of ketamine in rats in the forced swimming test. Pharmacol Biochem Behav 110C:8–12
    Zhou QG, Hu Y, Hua Y, Hu M, Luo CX, Han X, Zhu XJ, Wang B, Xu JS, Zhu DY (2007) Neuronal nitric oxide synthase contributes to chronic stress-induced depression by suppressing hippocampal neurogenesis. J Neurochem 103:1843–1854