Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Distributed shape derivative via averaged adjoint method and applications (2016)

  • Authors:
  • USP affiliated authors: LAURAIN, ANTOINE - IME
  • USP Schools: IME
  • DOI: 10.1051/m2an/2015075
  • Subjects: CÁLCULO DE VARIAÇÕES; EQUAÇÕES DIFERENCIAIS PARCIAIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1051/m2an/2015075 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1051/m2an/2015075 (Fonte: Unpaywall API)

    Título do periódico: ESAIM: Mathematical Modelling and Numerical Analysis

    ISSN: 0764-583X,1290-3841

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:
    Informações sobre o Citescore
  • Título: ESAIM: Mathematical Modelling and Numerical Analysis

    ISSN: 0764-583X

    Citescore - 2017: 2.09

    SJR - 2017: 1.966

    SNIP - 2017: 1.456


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IME2771001-10PROD-2771001
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LAURAIN, Antoine; STURM, Kevin. Distributed shape derivative via averaged adjoint method and applications. ESAIM: Mathematical Modelling and Numerical Analysis, Les Ulis, v. 50, n. 4, p. 1241-1267, 2016. Disponível em: < https://doi.org/10.1051/m2an/2015075 > DOI: 10.1051/m2an/2015075.
    • APA

      Laurain, A., & Sturm, K. (2016). Distributed shape derivative via averaged adjoint method and applications. ESAIM: Mathematical Modelling and Numerical Analysis, 50( 4), 1241-1267. doi:10.1051/m2an/2015075
    • NLM

      Laurain A, Sturm K. Distributed shape derivative via averaged adjoint method and applications [Internet]. ESAIM: Mathematical Modelling and Numerical Analysis. 2016 ; 50( 4): 1241-1267.Available from: https://doi.org/10.1051/m2an/2015075
    • Vancouver

      Laurain A, Sturm K. Distributed shape derivative via averaged adjoint method and applications [Internet]. ESAIM: Mathematical Modelling and Numerical Analysis. 2016 ; 50( 4): 1241-1267.Available from: https://doi.org/10.1051/m2an/2015075

    Referências citadas na obra
    Adalsteinsson D. and Sethian J.A., A fast level set method for propagating interfaces.J. Comput. Phys.118(1995) 269–277.
    Afraites L., Dambrine M. and Kateb D., Shape methods for the transmission problem with a single measurement.Numer. Funct. Anal. Optim.28(2007) 519–551.
    Allaire G., Jouve F. and Toader A.-M., Structural optimization using sensitivity analysis and a level-set method.J. Comput. Phys.194(2004) 363–393.
    Belhachmi Z. and Meftahi H., Shape sensitivity analysis for an interface problem via minimax differentiability.Appl. Math. Comput.219(2013) 6828–6842.
    Borcea L., Electrical impedance tomography.Inverse Problems18(2002) R99–R136.
    A.-P. Calderón, On an inverse boundary value problem. InSeminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980). Soc. Brasil. Mat., Rio de Janeiro (1980) 65–73.
    Canelas A., Laurain A. and Novotny A.A., A new reconstruction method for the inverse potential problem.J. Comput. Phys.268(2014) 417–431.
    Canelas A., Laurain A. and Novotny A.A., A new reconstruction method for the inverse source problem from partial boundary measurements.Inverse Problems31(2015) 075009.
    Céa J., Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la fonction coût.RAIRO M2AN20(1986) 371–402.
    Cheney M., Isaacson D. and Newell J.C., Electrical impedance tomography.SIAM Rev.41(1999) 85–101 (electronic).
    Chung E.T., Chan T.F. and Tai X.-C., Electrical impedance tomography using level set representation and total variational regularization.J. Comput. Phys.205(2005) 357–372.
    Delfour M.C. and Zolésio J.-P., Shape sensitivity analysis via min max differentiability.SIAM J. Control Optim.26(1988) 834–862.
    M.C. Delfour and J.-P. Zolésio, Shapes and geometries. Metrics, analysis, differential calculus, and optimization. Vol. 22 ofAdvances in Design and Control, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2011).
    Eshelby J.D., The elastic energy-momentum tensor. Special issue dedicated to A.E. Green.J. Elasticity5(1975) 321–335.
    P. Fulmanski, A. Laurain and J.-F. Scheid, Level set method for shape optimization of Signorini problem. InMMAR Proceedings(2004) 71–75.
    Fulmański P., Laurain A., Scheid J.-F. and Sokołowski J., A level set method in shape and topology optimization for variational inequalities.Int. J. Appl. Math. Comput. Sci.17(2007) 413–430.
    Fulmański P., Laurain A., Scheid J.-F. and Sokołowski J., Level set method with topological derivatives in shape optimization.Int. J. Comput. Math.85(2008) 1491–1514.
    P. Fulmanski, A. Laurain, J.-F. Scheid and J. Sokolowski, Une méthode levelset en optimisation de formes. InCANUM 2006 – Congrès National d’Analyse Numérique. Vol. 22 ofESAIM Proc. SurveyEDP Sciences, Les Ulis (2008) 162–168.
    J. Hadamard, Mémoire sur le probleme d’analyse relatif a l’équilibre des plaques élastiques. In Mémoire des savants étrangers, 33, 1907, Œuvres de Jacques Hadamard. Editions du C.N.R.S., Paris (1968) 515–641.
    A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse géométrique. [A geometric analysis]. Vol. 48 ofMath. Appl.Springer, Berlin (2005).
    Hettlich F., The domain derivative of time-harmonic electromagnetic waves at interfaces.Math. Methods Appl. Sci.35(2012) 1681–1689.
    Hintermüller M. and Laurain A., Electrical impedance tomography: from topology to shape.Control Cybernet.37(2008) 913–933.
    Hintermüller M. and Laurain A., Multiphase image segmentation and modulation recovery based on shape and topological sensitivity.J. Math. Imaging Vision35(2009) 1–22.
    Hintermüller M. and Laurain A., Optimal shape design subject to elliptic variational inequalities.SIAM J. Control Optim.49(2011) 1015–1047.
    M. Hintermüller, A. Laurain and A.A. Novotny, Second-order topological expansion for electrical impedance tomography.Adv. Comput. Math.(2011) 1–31.
    Hintermüller M., Laurain A. and Yousept I., Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model.Inverse Problems31(2015) 065006.
    Hiptmair R., Paganini A. and Sargheini S., Comparison of approximate shape gradients.BIT55(2015) 459–485.
    Hömberg D. and Sokołowski J., Optimal shape design of inductor coils for surface hardening.SIAM J. Control Optim.42(2003) 1087–1117 (electronic).
    Kress R., Inverse problems and conformal mapping.Complex Var. Elliptic Equ.57(2012) 301–316.
    A. Logg, K.-A. Mardal and G.N. Wells, editors, Automated Solution of Differential Equations by the Finite Element Method. Vol. 84 ofLecture Notes in Computational Science and Engineering. Springer (2012).
    J.L. Mueller and S. Siltanen, Linear and nonlinear inverse problems with practical applications. Vol. 10 ofComputational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2012).
    Nagumo M., Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen.Proc. Phys. Math. Soc. Japan24(1942) 551–559.
    A.A. Novotny and J. Sokołowski, Topological derivatives in shape optimization.Interaction of Mechanics and Mathematics.Springer, Heidelberg (2013).
    Osher S. and Sethian J.A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations.J. Comput. Phys.79(1988) 12–49.
    Osher S. and Shu C.-W., High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations.SIAM J. Numer. Anal.28(1991) 907–922.
    S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces. Vol. 153 ofApplied Mathematical Sciences. Springer–Verlag, New York (2003).
    Pantz O., Sensibilité de l’équation de la chaleur aux sauts de conductivité.C. R. Math. Acad. Sci. Paris341(2005) 333–337.
    Peng D., Merriman B., Osher S., Zhao H. and Kang M., A PDE-based fast local level set method.J. Comput. Phys.155(1999) 410–438.
    M. Renardy and R.C. Rogers. An introduction to partial differential equations. Vol. 13 ofTexts in Applied Mathematics, 2nd edn. Springer–Verlag, New York (2004).
    J.A. Sethian, Level set methods and fast marching methods. Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Vol. 3 ofCambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, second edition (1999).
    J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization. Shape sensitivity analysis. Vol. 16 ofSpringer Series in Computational Mathematics. Springer-Verlag, Berlin (1992).
    Sturm K., Minimax Lagrangian approach to the differentiability of non-linear PDE constrained shape functions without saddle point assumption.SIAM J. Control Optim.53(2015) 2017–2039.
    Sturm K., Hömberg D. and Hintermüller M., Shape optimization for a sharp interface model of distortion compensation.WIAS-preprint4(2013) 807–822.
    J.-P. Zolésio,Identification de domaines par déformations. Thèse de doctorat d’état, Université de Nice, France (1979).