Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Correlations between climate network and relief data (2014)

  • Authors:
  • USP affiliated authors: COSTA, LUCIANO DA FONTOURA - IFSC ; RODRIGUES, FRANCISCO APARECIDO - ICMC
  • USP Schools: IFSC; ICMC
  • DOI: 10.5194/npg-21-1127-2014
  • Subjects: FÍSICA MATEMÁTICA; REDES COMPLEXAS; SISTEMAS DINÂMICOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.5194/npg-21-1127-2014 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.5194/npg-21-1127-2014 (Fonte: Unpaywall API)

    Título do periódico: Nonlinear Processes in Geophysics

    ISSN: 1607-7946

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: submittedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Nonlinear Processes in Geophysics

    ISSN: 1023-5809

    Citescore - 2017: 1.54

    SJR - 2017: 0.61

    SNIP - 2017: 0.798


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IFSC89025169PROD025169
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PERON, T. K. D.; COMIN, C. H.; AMANCIO, D. R.; et al. Correlations between climate network and relief data. Nonlinear Processes in Geophysics, Goettingen, Copernicus, v. 21, n. 6, p. 1127-1132, 2014. Disponível em: < http://dx.doi.org/10.5194/npg-21-1127-2014 > DOI: 10.5194/npg-21-1127-2014.
    • APA

      Peron, T. K. D., Comin, C. H., Amancio, D. R., Costa, L. da F., Rodrigues, F. A., & Kurths, J. (2014). Correlations between climate network and relief data. Nonlinear Processes in Geophysics, 21( 6), 1127-1132. doi:10.5194/npg-21-1127-2014
    • NLM

      Peron TKD, Comin CH, Amancio DR, Costa L da F, Rodrigues FA, Kurths J. Correlations between climate network and relief data [Internet]. Nonlinear Processes in Geophysics. 2014 ; 21( 6): 1127-1132.Available from: http://dx.doi.org/10.5194/npg-21-1127-2014
    • Vancouver

      Peron TKD, Comin CH, Amancio DR, Costa L da F, Rodrigues FA, Kurths J. Correlations between climate network and relief data [Internet]. Nonlinear Processes in Geophysics. 2014 ; 21( 6): 1127-1132.Available from: http://dx.doi.org/10.5194/npg-21-1127-2014

    Referências citadas na obra
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.: Complex networks: Structure and dynamics, Phys. Rep., 424, 175–308, 2006.
    Clauset, A., Newman, M. E., and Moore, C.: Finding community structure in very large networks, Phys. Rev. E, 70, 066111, https://doi.org/10.1103/PhysRevE.70.066111, 2004.
    Costa, L., Rodrigues, F., Travieso, G., and Boas, P.: Characterization of complex networks: A survey of measurements, Adv. Phys., 56, 167–242, 2007.
    da Fontoura Costa, L., Oliveira Jr., O., Travieso, G., Rodrigues, F., Boas, P., Antiqueira, L., Viana, M., and Rocha, L.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications, Adv. Phys., 60, 329–412, 2011.
    Donges, J. F., Zou, Y., Marwan, N., and Kurths, J.: The backbone of the climate network, EPL-Europhys. Lett., 87, 48007, https://doi.org/10.1209/0295-5075/87/48007, 2009a.
    Donges, J. F., Zou, Y., Marwan, N., and Kurths, J.: Complex networks in climate dynamics, Eur. Phys. J.-Spec. Top., 174, 157–179, https://doi.org/10.1140/epjst/e2009-01098-2, 2009b.
    Duch, J. and Arenas, A.: Community detection in complex networks using extremal optimization, Phys. Rev. E, 72, 027104, https://doi.org/10.1103/PhysRevE.72.027104, 2005.
    Fan, Y. and Van den Dool, H.: A global monthly land surface air temperature analysis for 1948–present, J. Geophys. Res., 113, D01103, https://doi.org/10.1029/2007JD008470, 2008.
    Fortunato, S.: Community detection in graphs, Phys. Rep., 486, 75–174, 2010.
    Gozolchiani, A., Yamasaki, K., Gazit, O., and Havlin, S.: Pattern of climate network blinking links follows El Nino events, EPL-Europhys. Lett., 83, 28005, https://doi.org/10.1209/0295-5075/83/28005, 2008.
    Guimera, R., Sales-Pardo, M., and Amaral, L. A. N.: Modularity from fluctuations in random graphs and complex networks, Phys. Rev. E, 70, 025101, https://doi.org/10.1103/PhysRevE.70.025101, 2004.
    Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den Dool, H., Jenne, R., and Fiorino, M.: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation, B. Am. Meteorol. Soc., 82, 247–268, 2001.
    Mheen, M., Dijkstra, H. A., Gozolchiani, A., Toom, M., Feng, Q., Kurths, J., and Hernandez-Garcia, E.: Interaction network based early warning indicators for the Atlantic MOC collapse, Geophys. Res. Lett., 40, 2714–2719, 2013.
    Newman, M. E. J.: Mixing patterns in networks, Phys. Rev. E, 67, 026126, https://doi.org/10.1103/PhysRevE.67.026126, 2003.
    Newman, M. E. J.: Fast algorithm for detecting community structure in networks, Phys. Rev. E, 69, 066133, https://doi.org/10.1103/PhysRevE.69.066133, 2004.
    Newman, M. E. J.: Finding community structure in networks using the eigenvectors of matrices, Phys. Rev. E, 74, 036104, https://doi.org/10.1103/PhysRevE.74.036104, 2006.
    NGDC (National Geophysical Data Center): Relief dataset, available at: http://www.ngdc.noaa. gov/mgg/global/global.html, last access: 7 April 2014, 2009.
    NOAA (National Oceanic and Atmospheric Administration): Datasets and variables, available at: http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/, last access: 7 April 2014, 2013.
    Reichardt, J. and Bornholdt, S.: Statistical mechanics of community detection, Phys. Rev. E, 74, 016110, https://doi.org/10.1103/PhysRevE.74.016110, 2006.
    Rheinwalt, A., Marwan, N., Kurths, J., Werner, P., and Gerstengarbe, F.-W.: Boundary effects in network measures of spatially embedded networks, EPL-Europhys. Lett., 100, 28002, https://doi.org/10.1209/0295-5075/100/28002, 2012.
    Runge, J., Petoukhov, V., and Kurths, J.: Quantifying the Strength and Delay of Climatic Interactions: The Ambiguities of Cross Correlation and a Novel Measure Based on Graphical Models, J. Climate, 27, 720–739, 2014.
    Tsonis, A. and Roebber, P.: The architecture of the climate network, Physica A, 333, 497–504, 2004.
    Tsonis, A. and Swanson, K.: Topology and predictability of El Nino and La Nina networks, Phys. Rev. Lett., 100, 228502, https://doi.org/10.1103/PhysRevLett.100.228502, 2008.
    Tsonis, A., Swanson, K., and Roebber, P.: What do networks have to do with climate?, B. Am. Meteorol. Soc., 87, 585–596, 2006.
    Tsonis, A., Swanson, K., and Wang, G.: On the role of atmospheric teleconnections in climate, J. Climate, 21, 2990–3001, 2008.
    Tsonis, A. A., Wang, G., Swanson, K. L., Rodrigues, F. A., and Costa, L. d. F.: Community structure and dynamics in climate networks, Clim. Dynam., 37, 933–940, 2011.
    Viana, M. P., Batista, J. a. L. B., and Costa, L. d. F.: Effective number of accessed nodes in complex networks, Phys. Rev. E, 85, 036105, https://doi.org/10.1103/PhysRevE.85.036105, 2012.
    Yamasaki, K., Gozolchiani, A., and Havlin, S.: Climate networks around the globe are significantly affected by El Nino, Phys. Rev. Lett., 100, 228501, https://doi.org/10.1103/PhysRevLett.100.228501, 2008.