Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates (2016)

  • Authors:
  • USP affiliated authors: MORELHAO, SERGIO LUIZ - IF
  • USP Schools: IF
  • DOI: 10.1038/srep28128
  • Subjects: SEMICONDUTORES; RAIOS X
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1038/srep28128 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/srep28128 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Journal of Applied Crystallography

    ISSN: 0021-8898

    Citescore - 2017: 2.72

    SJR - 2017: 1.635

    SNIP - 2017: 1.346


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DOMAGALA, Jaroslaw Z.; SARZYNSKI, Marcin; MAZDZIARZ, Marcin; et al. Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates. Journal of Applied Crystallography, Chester, v. 49, n. ju 2016, p. 798-805, 2016. DOI: 10.1038/srep28128.
    • APA

      Domagala, J. Z., Sarzynski, M., Mazdziarz, M., Dluzewski, P., Leszczynski, M., & Morelhao, S. L. (2016). Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates. Journal of Applied Crystallography, 49( ju 2016), 798-805. doi:10.1038/srep28128
    • NLM

      Domagala JZ, Sarzynski M, Mazdziarz M, Dluzewski P, Leszczynski M, Morelhao SL. Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates. Journal of Applied Crystallography. 2016 ; 49( ju 2016): 798-805.
    • Vancouver

      Domagala JZ, Sarzynski M, Mazdziarz M, Dluzewski P, Leszczynski M, Morelhao SL. Hybrid reciprocal lattice: application to layer stress determination in 'GA''AL''N'/'GA''N'(0001) systems with patterned substrates. Journal of Applied Crystallography. 2016 ; 49( ju 2016): 798-805.

    Referências citadas na obra
    Katsube, T. & Williamson, M. Effects of diagenesis on shale nano-pore structure and implications for sealing capacity. Clay Miner. 29, 451–472 (1994).
    Hansen, E. W., Stocker, M. & Schmidt, R. Low-temperature phase transition of water confined in mesopores probed by nmr. influence on pore size distribution. J. Phys. Chem. 100, 2195–2200 (1996).
    Liu, L., Chen, S.-H., Faraone, A., Yen, C.-W. & Mou, C.-Y. Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95, 117802 (2005).
    Bonnaud, P. A., Coasne, B. & Pellenq, R. J.-M. Molecular simulation of water confined in nanoporous silica. J. Phys.: Condens. Matter 22, 284110 (2010).
    Du, Z. & de Leeuw, N. H. Molecular dynamics simulations of hydration, dissolution and nucleation processes at the α-quartz (0001) surface in liquid water. Dalton Trans. 22, 2623–2634 (2006).
    Bourg, I. C. & Steefel, C. I. Molecular dynamics simulations of water structure and diffusion in silica nanopores. J. Phys. Chem. C 116, 11556–11564 (2012).
    Botan, A., Rotenberg, B., Marry, V., Turq, P. & Noetinger, B. Hydrodynamics in clay nanopores. J. Phys. Chem. C 115, 16109–16115 (2011).
    Zhu, C., Li, H. & Meng, S. Transport behavior of water molecules through two-dimensional nanopores. J. Chem. Phys. 141, 18C528 (2014).
    Xu, B., Li, Y., Park, T. & Chen, X. Effect of wall roughness on fluid transport resistance in nanopores. J. Chem. Phys. 135, 144703 (2011).
    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
    Cruz-Chu, E. R., Aksimentiev, A. & Schulten, K. Water/silica force field for simulating nanodevices. J. Phys. Chem. B 110, 21497–21508 (2006).
    Brooks, B. R. et al. Charmm: The biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).
    Alejandre, J., Chapela, G. A., Bresme, F. & Hansen, J.-P. The short range anion-h interaction is the driving force for crystal formation of ions in water. J. Chem. Phys. 130, 174505 (2009).
    Lorentz, H. A. Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase. Ann. Phys. 248, 127–136 (1881).
    Berthelot, D. Sur le mélange des gaz. C. R. Hebd. Seances Acad. Sci. 126, 1703–1855 (1898).
    Thompson, A. P., Plimpton, S. J. & Mattson, W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 131, 154107 (2009).
    Hockney, R. W. J. E. Computer Simulation using Particles (Adam Hilger, New York, 1989).
    Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford University Press, 1987).
    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).
    Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
    Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72, 2384–2393 (1980).
    Geun Kim, B., Sik Lee, J., Han, M. & Park, S. A molecular dynamics study on stability and thermophysical properties of nanoscale liquid threads. Nanoscale Microscale Thermophys. Eng. 10, 283–304 (2006).
    Wang, X. & Zhu, R. A method to calculate the surface tension of a cylindrical droplet. Eur. J. Phys. 31, 79–87 (2010).
    Irving, J. H. & Kirkwood, J. G. The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950).
    de Lara, L. S., Michelon, M. F., Metin, C. O., Nguyen, Q. P. & Miranda, C. R. Interface tension of silica hydroxylated nanoparticle with brine: A combined experimental and molecular dynamics study. J. Chem. Phys. 136, 164702 (2012).
    Makimura, D. et al. Combined modeling and experimental studies of hydroxylated silica nanoparticles. J. Mater. Sci. 45, 5084–5088 (2010).
    Laskowski, J. & Kitchener, J. The hydrophilic—hydrophobic transition on silica. J. Colloid Interface Sci. 29, 670–679 (1969).
    Zhuravlev, L. The surface chemistry of amorphous silica. zhuravlev model. Colloids Surf., A 173, 1–38 (2000).
    de Lara, L. S., Michelon, M. F. & Miranda, C. R. Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes. J. Phys. Chem. B 116, 14667–14676 (2012).
    Kunieda, M. et al. Self-accumulation of aromatics at the oil/water interface through weak hydrogen bonding. J. Am. Chem. Soc. 132, 18281–18286 (2010).
    Chiavazzo, E., Fasano, M., Asinari, P. & Decuzzi, P. Scaling behaviour for the water transport in nanoconfined geometries. Nat. Commun. 5, 4565 (2014).
    Fasano, M., Chiavazzo, E. & Asinari, P. Water transport control in carbon nanotube arrays. Nanoscale Research Letters 9, 1–8 (2014).
    González, M. A. & Abascal, J. L. F. The shear viscosity of rigid water models. J. Chem. Phys. 132, 096101 (2010).
    Harris, K. R. & Woolf, L. A. Temperature and volume dependence of the viscosity of water and heavy water at low temperatures. J. Chem. Eng. Data 49, 1064–1069 (2004).