Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Does anatoxin-a influence the physiology of Microcystis aeruginosa and Acutodesmus acuminatus under different light and nitrogen conditions? (2016)

  • Authors:
  • USP affiliated authors: OLIVEIRA, MARIA DO CARMO BITTENCOURT DE - ESALQ
  • USP Schools: ESALQ
  • DOI: 10.1007/s11356-016-7538-8
  • Subjects: CYANOPHYTA; ANTIOXIDANTES; METABÓLITOS SECUNDÁRIOS; NITROGÊNIO; TOXINAS
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s11356-016-7538-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s11356-016-7538-8 (Fonte: Unpaywall API)

    Título do periódico: Environmental Science and Pollution Research

    ISSN: 0944-1344,1614-7499



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Environmental Science and Pollution Research

    ISSN: 0944-1344

    Citescore - 2017: 2.84

    SJR - 2017: 0.858

    SNIP - 2017: 0.942


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CHIA, Mathias Ahii; CORDEIRO ARAÚJO, Micheline Kézia; LORENZI, Adriana Sturion; BITTENCOURT-OLIVEIRA, Maria do Carmo. Does anatoxin-a influence the physiology of Microcystis aeruginosa and Acutodesmus acuminatus under different light and nitrogen conditions? Environmental Science and Pollution Research, Heidelberg, Springer Nature, v. 23, n. 22, p. 23092–23102, 2016. Disponível em: < http://dx.doi.org/10.1007/s11356-016-7538-8 > DOI: 10.1007/s11356-016-7538-8.
    • APA

      Chia, M. A., Cordeiro Araújo, M. K., Lorenzi, A. S., & Bittencourt-Oliveira, M. do C. (2016). Does anatoxin-a influence the physiology of Microcystis aeruginosa and Acutodesmus acuminatus under different light and nitrogen conditions? Environmental Science and Pollution Research, 23( 22), 23092–23102. doi:10.1007/s11356-016-7538-8
    • NLM

      Chia MA, Cordeiro Araújo MK, Lorenzi AS, Bittencourt-Oliveira M do C. Does anatoxin-a influence the physiology of Microcystis aeruginosa and Acutodesmus acuminatus under different light and nitrogen conditions? [Internet]. Environmental Science and Pollution Research. 2016 ; 23( 22): 23092–23102.Available from: http://dx.doi.org/10.1007/s11356-016-7538-8
    • Vancouver

      Chia MA, Cordeiro Araújo MK, Lorenzi AS, Bittencourt-Oliveira M do C. Does anatoxin-a influence the physiology of Microcystis aeruginosa and Acutodesmus acuminatus under different light and nitrogen conditions? [Internet]. Environmental Science and Pollution Research. 2016 ; 23( 22): 23092–23102.Available from: http://dx.doi.org/10.1007/s11356-016-7538-8

    Referências citadas na obra
    Al-Sammak MA, Hoagland KD, Cassada D, Snow DD (2014) Co-occurrence of the cyanotoxins BMAA, DBA and anatoxin-a in Nebraska reservoirs, fish, and aquatic plants. Toxins 6:488–508
    Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:235–241
    Babica P, Kohoutek J, Bláha L, Adamovsky O, Marsálek B (2006) Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. Anal Bioanal Chem 85:1545–1551
    Bártova K, Hilscherova K, Babica P, Marsalek B, Bláha L (2011) Effects of microcystin and complex cyanobacterial samples on the growth and oxidative stress parameters in green alga Pseudokirchneriella subcapitata and comparison with the model oxidative stressor herbicide paraquat. Environ Toxicol 26:641–648
    Bittencourt-Oliveira MC, Chia AM, de Oliveira HSB, Cordeiro-Araújo MK, Molica RJR, Dias CTS (2015) Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27:275–284
    Bláhová L, Oravec M, Marsálek B, Sejnohová L, Simek Z, Bláha L (2009) The first occurrence of the cyanobacterial alkaloi toxin cylindrospermopsin in the Czech Republic as determined by immunochemical and LC/MS methods. Toxicon 53:519–524
    Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194
    Botes DP, Wessels PL, Kruger H, Runnegar MTC, Santikarn S, et al. (1985) Structural studies on cyanoginosins-LR, -YR, -YA, and –YM, peptide toxins from Microcystis aeruginosa. J Chem Soc, Perkin Transactions I:2747–2748
    Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Chem 72:243–254
    Briand E, Bormans M, Quiblier C, Salençon MJ, Humbert JF (2012) Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS One 7(1):e29981
    Campos A, Araújo P, Pinheiro C, Azevedo J, Osório H, Vasconcelos V (2013) Effect on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin. Ecotoxicol Environ Saf 94:45–53
    Carmichael WW, Biggs DF, Gorham PR (1975) Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 187:542–544
    Chia AM, Cordeiro-Araújo MK, Bittencourt-Oliveira MC (2015a) Growth and antioxidant response of Microcystis aeruginosa (cyanobacteria) exposed to anatoxin-a. Harmful Algae 49:135–146
    Chia AM, Chimdirim PK, Japhet WS (2015b) Lead induced antioxidant response and phenotypic plasticity of Scenedesmus quadricauda (Turp.) de Brebisson under different nitrogen conditions. J Appl Phycol 27:293–302
    Chia AM, Lombardi AT, Melão MGG, Parrish CC (2015c) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aquat Toxicol 160:87–95
    Deng L, Senseman SA, Gentry TJ, Zuberer DA, Weiss TL, Devarenne TP, Camargo ER (2012) Effect of selected herbicides on growth and hydrocarbon content of Botryococcus braunii (race B). Ind Crop Prod 39:154–161
    Furey A, Crowley J, Hamilton B, Lehane M, James KJ (2005) Strategies to avoid the mis-identification of anatoxin-a using mass spectrometry in the forensic investigation of acute neurotoxic poisoning. J Chromatogr A 1082:91–97
    Ger KA, Teh SJ, Baxa DV, Lesmeister S, Goldman CR (2010) The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Franscisco estuary. Freshw Biol 55:1548–1559
    Graham JL, Loftin KA, Meyer MT, Ziegler AC (2010) Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ Sci Technol 44:7361–7368
    Gross EM (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339
    Ha MH, Pflugmacher S (2013a) Phytotoxic effects of the cyanobacterial neurotoxin anatoxin-a: morphological, physiological and biochemical responses in aquatic macrophyte, Ceratophyllum demersum. Toxicon 70:1–8
    Ha MH, Pflugmacher S (2013b) Time-dependent alterations in growth, photosynthetic pigments and enzymatic defense systems of submerged Ceratophyllum demersum during exposure to the cyanobacterial neurotoxin anatoxin-a. Aquat Toxicol 138-139:26–34
    Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139
    Harel M, Weiss G, Lieman-Hurwitz J, Gun J, Lev O, Lebendiker M, et al. (2013) Interactions between Scenedesmus and Microcystis may be used to clarify the role of secondary metabolites. Environ Microbiol Rep 5:97–104
    Hereman TC, Bittencourt-Oliveira MC (2012) Bioaccumulation of microcystins in lettuce. Journal of Phycology J Phycol 48:1535–1537
    Holland A, Kinnear S (2013) Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Mar Drugs 11:2239–2258
    Huang YL, Zhang P, Zhu C, Zhou ZH (2012) Vertical migration comparison of Scenedesmus and Microcystis. Adv Mat Res 518-523:558–564
    James KJ, Sherlock IR, Stack MA (1997) Anatoxin-a in Irish fresh-water and cyanobacteria, determined using a new fluorimetric liquid chromatographic method. Toxicon 35:963–971
    Jana S, Choudhuri MA (1982) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354
    Johansson LH, Borg LAH (1988) A spectrophotometric method for determination of catalase activity in small tissue samples. Anal Biochem 174:331–336
    Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638
    Juttner F, Leonhardt J, Mohren S (1983) Environmental factors affecting the formation of mesityloxide dimethylallylic alcohol and other volatile compounds excreted by Anabaena cylindrical. J Gen Microbiol 129:407–412
    Kearns KD, Hunter MD (2000) Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environ Microbiol 2:291–297
    Kearns KD, Hunter MD (2001) Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microbial Ecol 42:80–86
    Krienitz L, Hegewald E, Hepperle D, Wolf M (2003) The systematics of coccoid green algae: 18S rRNA gene sequence data versus morphology. Biologia 58:437–446
    Larkum AWD, Douglas SE, Raven JA (2003) Photosynthesis in algae. Kluwer, Dordrecht Netherlands, p. 479
    Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214
    Liu Y, Xu Y, Yu YP, Yu R, Li P, Qiao D, Cao Y, Cao Y (2014) The biodiversity of oleaginous microalgae in northern Qinghai-Tibet plateau. Afr J Microbiol Res 8:66–74
    Lozano P, Trombini C, Crespo E, Blasco J, Moreno-Garrido I (2014) ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicol Environ Saf 104:294–301
    Méjean A, Ploux O (2013) A genomic view of secondary metabolite production in cyanobacteria. Genomics of cyanobacteria. Adv Bot Res 65:189–234
    Metcalf JS, Bell SG, Codd GA (2000) Production of novel polyclonal antibodies against the cyanobacterial toxin microcystin-LR and their application for the detection and quantification of microcystins and nodularin. Water Res 34:2761–2769
    Mikula P, Zezulka S, Jancula D, Marsalek B (2012) Metabolic activity and membrane integrity changes in Microcystis aeruginosa—new findings on hydrogen peroxide toxicity in cyanobacteria. Eur J Phycol 47:195–206
    Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595
    Misra HP, Fridovich I (1972) The generation of superoxide radical antioxidation of haemoglobin. J Biol Chem 247:6960–6962
    Mitrovic SM, Pflugmacher S, James KJ, Furey A (2004) Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquat Toxicol 68:185–192
    Mohamed ZA, Carmichael WW, Hussein AA (2003) Estimation of microcystins in the fresh water fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18:137–141
    Molisch H (1937) Der Einfluss einer Pflanze auf die andere—Allelopathie. Fischer, Jena
    Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microb 63:3327–3332
    Paerl H (2008) Nutrient and other environment controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Cyanobacterial harmful algal blooms. Adv Exp Med Biol 619:217–237
    Pawlik-Skowronska B, Skowronski T, Pirszel J, Adamczyk A (2004) Relationship between cyanobacterial bloom composition and anatoxin-a and microcystin occurrence in the eutrophic dam reservoir (Se Poland). Pol J Ecol 52:479–490
    Qiao W, Li C, Fan LM (2014) Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ Exp Bot 100:84–93
    Rasoul-Amini S, Ghasemi Y, Morowvat MH, Mohagheghzadeh A (2009) PCR amplification of 18S rRNA, single cell protein production and fatty acid evaluation of some naturally isolated microalgae. Food Chem 16:129–136
    Reddy JK, Suga T, Mannaerts GP, Lazarow PB, Subramani S (1995) Peroxisomes: biology and role in toxicology and disease. Ann N Y Acad Sci, New York, pp. 1–795
    Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge, UK
    Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosyn Res 89:27–41
    Rzymski P, Poniedzialek B, Kokocinski M, Jurczk T, Lipski D, Wiktorowicz K (2014) Interspecific allelopathy in cyanobacteria: cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35:1–8
    Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical markers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15
    Van de Waal DB, Verspagen JMH, Lurling M, Van Donk E, Visser PM, et al. (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Letters 12:1326–1335
    Willame R, Boutte C, Grubisic S, Willmotte A, Komárek J, Hoffmann L (2006) Morphological and molecular characterization of planktonic cyanobacteria from Belgium and Luxemburg. J Phycol 42:1312–1332