Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Automatic diagnosis for profibus networks (2016)

  • Authors:
  • USP affiliated authors: BRANDÃO, DENNIS - EESC
  • USP Schools: EESC
  • DOI: 10.1007/s40313-016-0261-3
  • Subjects: AUTOMAÇÃO INDUSTRIAL; REDE DE COMUNICAÇÃO; PROTOCOLOS DE COMUNICAÇÃO; ENGENHARIA ELÉTRICA
  • Keywords: SISTEMAS INTELIGENTES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s40313-016-0261-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s40313-016-0261-3 (Fonte: Unpaywall API)

    Título do periódico: Journal of Control, Automation and Electrical Systems

    ISSN: 2195-3880,2195-3899



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Control, Automation and Electrical Systems

    ISSN: 2195-3880

    Citescore - 2017: 0.96

    SJR - 2017: 0.274

    SNIP - 2017: 0.472


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    EESC2791977-10PROD-019627
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MOSSIN, Eduardo André; BRANDÃO, Dennis; SESTITO, Guilherme Serpa; TORRES, Renato Veiga. Automatic diagnosis for profibus networks. Journal of Control, Automation and Electrical Systems, Heidelberg, Germany, v. 27, n. 6, p. 658-669, 2016. Disponível em: < http://dx.doi.org/10.1007/s40313-016-0261-3 > DOI: 10.1007/s40313-016-0261-3.
    • APA

      Mossin, E. A., Brandão, D., Sestito, G. S., & Torres, R. V. (2016). Automatic diagnosis for profibus networks. Journal of Control, Automation and Electrical Systems, 27( 6), 658-669. doi:10.1007/s40313-016-0261-3
    • NLM

      Mossin EA, Brandão D, Sestito GS, Torres RV. Automatic diagnosis for profibus networks [Internet]. Journal of Control, Automation and Electrical Systems. 2016 ; 27( 6): 658-669.Available from: http://dx.doi.org/10.1007/s40313-016-0261-3
    • Vancouver

      Mossin EA, Brandão D, Sestito GS, Torres RV. Automatic diagnosis for profibus networks [Internet]. Journal of Control, Automation and Electrical Systems. 2016 ; 27( 6): 658-669.Available from: http://dx.doi.org/10.1007/s40313-016-0261-3

    Referências citadas na obra
    Cello, M., Marchese, M., & Mongelli, M. (2016). On the QoS estimation in an OpenFlow network: The packet loss case. IEEE Communications Letters, 20(3), 554–557.
    Chang, C. C., & Hsieh, S. (2012). A SOA-based expert system for wireless networks problem diagnosis. In International conference on computer science and service system (CSSS), IEEE, 2012. pp. 2127–2130.
    Felser, M. (2006). Quality of profibus installations. In Workshop on factory communication systems, 2006 IEEE international, pp. 113–118.
    Kaghazchi, H., Li, H., & Ulrich, M. (2008). Influence of token rotation time in multi master PROFIBUS networks. In IEEE international workshop on factory communication systems (WFCS 2008). pp. 189–197.
    Khalid, R., Jassim, R. (2014). Expert diagnosis systems for network connection problems. In 2nd International conference on artificial intelligence, modelling and simulation (AIMS), IEEE, 2014. pp. 15–18.
    Lee, K. C. et al. (2003). Timer selection algorithm for real-time requirements of profibus protocol using GA. In Proceedings of the IEEE/ASME international conference on advanced intelligent mechatronics (AIM 2003). pp. 741–746.
    Manchester Metropolitan University Profibus International Competence Centre. (2008). Practical steps for a successful PROFIBUS project. Manchester Metropolitan University. Available at: http://www.profibus.com/uploads/media/pxddamkey%5B9101%5D_Successful_Profibus_Project_XuiJi.pdf . Access in 13/03/2016.
    Mironovova, M., & Bíla, J. (2015). Fast fourier transform for feature extraction and neural network for classification of electrocardiogram signals. In Fourth international conference on future generation communication technology (FGCT), 2015, Luton. IEEE, 2015. pp. 1–6.
    Mitra, S., Singh, R. K., & Mondal, A. K. (2014). An expert system based process control system for silicon steel mill furnace of rourkela steel plant. In Fourth international conference of emerging applications of information technology (EAIT). IEEE, 2014. pp. 29–33.
    Mohanapriya, S. P., Sumesh, E. P., & Karthika, R. (2014). Environmental sound recognition using Gaussian mixture model and neural network classifier. In International conference on green computing communication and electrical engineering (ICGCCEE). Coimbatore. IEEE, 2014. pp. 1–5.
    Mossin, E. A. (2012). Diagnóstico automático de redes Profibus. Ph.D. Thesis, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos. Acess in 2016-03-15. Available at: http://www.teses.usp.br/teses/disponiveis/18/18153/tde-10102012-162642 .
    Normative Parts of Profibus FMS, DP and PANormative Parts of Profibus FMS, DP and PA1998]V2004 Normative Parts of Profibus FMS, DP and PA (1998). According to the European standard EN50170 vol. 2, edition 1.0 (1998).
    Procentec (2016). User guide. Available at: http://www.procentec.com/media/1792/profitrace2-manual-en.pdf . Access in 13/03/2016.
    Profibus International. (2015). PROFIBUS, Design Guideline. v. 1.13, May 2015. Available at http://www.profibus.com
    Ross, T. J. (2010). Fuzzy logic with engineering applications (3rd ed., pp. 6–8). London: Wiley.
    Sestito, G. S., Toledo de Oliveira Souza, P. H., Mossin, E. A., Brandão, D., & Dias, A. L. (2014). Artificial neural networks and signal clipping for profibus DP diagnostics. In Paper presented at the proceedings—2014 12th IEEE international conference on industrial informatics, INDIN 2014, pp. 242–247.
    Softing. (2016). User guide. Available at: http://industrial.softing.com/en/products/profibus-tester-4-physical-installation-quality-and-protocol-analysis.html . Accessed 13 March 2016.
    Souza, R. C., Mossin, E. A., & Brandao, D. (2012). Physical diagnostic for profibus DP networks based on artificial neural network. In Proceeding of IEEE international conference on industrial technology (ICIT), 2012. 19–21 March 2012. pp. 766–771. doi: 10.1109/ICIT.2012.6210031 .
    Vitturi, S. (2004). On the effects of the acyclic traffic on profibus DP networks. Computer Standards & Interfaces, 26(2), 131–144.
    Waibel, A., Alshehri, A. A., & Ezekiel, S. (2013). Multi-perspective anomaly prediction using neural networks. In 2013 IEEE applied imagery pattern recognition workshop (AIPR). Washington, DC. IEEE, 2013. p. 1–6.
    Zhang, H., Rhee, J., Arora, N., Xu, Q., Lumezanu, C., & Jiang, G. (2014) An analytics approach to traffic analysis in network virtualization. In Proceedings of 10th international conference on network and service management (Cnsm) and workshop. Rio de Janeiro. IEEE, 2014. pp. 316–319.