Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites (2016)

  • Authors:
  • USP affiliated authors: D'ALPINO, NÁDIA DA ROCHA SVIZERO - HRAC
  • USP Schools: HRAC
  • DOI: 10.1007/s00784-015-1599-9
  • Subjects: RESINAS ACRÍLICAS; RESINAS COMPOSTAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00784-015-1599-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00784-015-1599-9 (Fonte: Unpaywall API)

    Título do periódico: Clinical Oral Investigations

    ISSN: 1432-6981,1436-3771



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Clinical Oral Investigations

    ISSN: 1432-6981

    Citescore - 2017: 2.25

    SJR - 2017: 0.986

    SNIP - 2017: 1.173


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      D'ALPINO, Paulo Henrique Perlatti; SVIZERO, Nádia da Rocha; BIM JUNIOR, Odair; et al. Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites. Clinical Oral Investigations, Berlin, v. 20, n. 5, p. 1011-1019, 2016. Disponível em: < http://dx.doi.org/10.1007/s00784-015-1599-9 > DOI: 10.1007/s00784-015-1599-9.
    • APA

      D'Alpino, P. H. P., Svizero, N. da R., Bim Junior, O., Valduga, C. J., Graeff, C. F. de O., & Sauro, S. (2016). Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites. Clinical Oral Investigations, 20( 5), 1011-1019. doi:10.1007/s00784-015-1599-9
    • NLM

      D'Alpino PHP, Svizero N da R, Bim Junior O, Valduga CJ, Graeff CF de O, Sauro S. Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites [Internet]. Clinical Oral Investigations. 2016 ; 20( 5): 1011-1019.Available from: http://dx.doi.org/10.1007/s00784-015-1599-9
    • Vancouver

      D'Alpino PHP, Svizero N da R, Bim Junior O, Valduga CJ, Graeff CF de O, Sauro S. Effects of age condition on the distribution and integrity of inorganic fillers in dental resin composites [Internet]. Clinical Oral Investigations. 2016 ; 20( 5): 1011-1019.Available from: http://dx.doi.org/10.1007/s00784-015-1599-9

    Referências citadas na obra
    Lung CY, Matinlinna JP (2012) Aspects of silane coupling agents and surface conditioning in dentistry: an overview. Dent Mater 28(5):467–477. doi: 10.1016/j.dental.2012.02.009
    Ferracane JL, Berge HX, Condon JR (1998) In vitro aging of dental composites in water-effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res 42(3):465–472. doi: 10.1002/(SICI)1097-4636
    McCabe JF, Wassell RW (1999) Hardness of model dental composites-the effect of filler volume fraction and silanation. J Mater Sci Mater Med 10(5):291–294
    Mohsen NM, Craig RG (1995) Effect of silanation of fillers on their dispersability by monomer systems. J Oral Rehabil 22(3):183–189
    Du M, Zheng Y (2007) Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Polym Compos 28(2):198–207. doi: 10.1002/pc.20377
    Shajii L, Santerre JP (1999) Effect of filler content on the profile of released biodegradation products in micro-filled bis-GMA/TEGDMA dental composite resins. Biomaterials 20(20):1897–1908
    Antonucci JM, Dickens SH, Fowler BO, Xu HHK, McDonough WG (2005) Chemistry of silanes: interfaces in dental polymers and composites. J Res Natl Inst Stand Technol 110(5):541–558
    De Monredon-Senani S, Bonhomme C, Ribot F, Babonneau F (2009) Covalent grafting of organoalkoxysilanes on silica surfaces in water-rich medium as evidence by 29 Si NMR. J Sol-Gel Sci Technol 50:152–157
    Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362. doi: 10.1021/la052797j
    Svizero Nda R, de Goes AR, Bueno Tde L, Di Hipolito V, Wang L, D’Alpino PH (2014) Micro-sized erosions in a nanofilled composite after repeated acidic beverage exposures: consequences of clusters dislodgments. J Appl Oral Sci 22(5):373–381. doi: 10.1590/1678-775720130658
    Hemmerich KJ (1998) General aging theory and simplified protocol for accelerated aging of medical devices. MDDI Medical Device and Diagnostic Industry News Products and Suppliers. http://www.mddionline.com/article/general-aging-theory-and-simplified-protocol-accelerated-aging-medical-devices
    USP (1990) USP XXII. 22 edn. United States Pharmacopoeial, Easton
    Clark G (1991) Shelf life of medical devices, guidance document
    D’Alpino PH, Vismara MV, Mello LM, Di Hipolito V, Gonzalez AH, Graeff CF (2014) Resin composite characterizations following a simplified protocol of accelerated aging as a function of the expiration date. J Mech Behav Biomed Mater 35:59–69. doi: 10.1016/j.jmbbm.2014.03.015
    Knowles JC, Callcut S, Georgiou G (2000) Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders. Biomaterials 21(13):1387–1392
    Zha LS, Li L, Bao LY (2007) Synthesis and colloidal stability of poly(N-isopropylacrylamide) microgels with different ionic groups on their surfaces. J Appl Polym Sci 103:3893–3898
    Karmaker A, Prasad A, Sarkar NK (2007) Characterization of adsorbed silane on fillers used in dental composite restoratives and its effect on composite properties. J Mater Sci Mater Med 18(6):1157–1162. doi: 10.1007/s10856-007-0145-y
    McDonough WG, Antonucci JM, Dunkers JP (2001) Interfacial shear strengths of dental resin-glass fibers by the microbond test. Dent Mater 17(6):492–498
    Drummond JL (2008) Degradation, fatigue, and failure of resin dental composite materials. J Dent Res 87(8):710–719
    Cramer NB, Stansbury JW, Bowman CN (2011) Recent advances and developments in composite dental restorative materials. J Dent Res 90(4):402–416. doi: 10.1177/0022034510381263
    Ferracane JL (2006) Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater 22(3):211–222. doi: 10.1016/j.dental.2005.05.005
    Leprince J, Palin WM, Mullier T, Devaux J, Vreven J, Leloup G (2010) Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types. J Oral Rehabil 37(5):364–376. doi: 10.1111/j.1365-2842.2010.02066.x
    Santos C, Clarke RL, Braden M, Guitian F, Davy KW (2002) Water absorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials 23(8):1897–1904
    Lien W, Vandewalle KS (2010) Physical properties of a new silorane-based restorative system. Dent Mater 26(4):337–344. doi: 10.1016/j.dental.2009.12.004
    Santos PJ, Silva MS, Alonso RC, D’Alpino PH (2013) Hydrolytic degradation of silorane- and methacrylate-based composite restorations: evaluation of push-out strength and marginal adaptation. Acta Odontol Scand 71(5):1273–1279. doi: 10.3109/00016357.2012.757649
    Chaves FO, de Farias NC, Medeiros LM, Alonso RC, Di Hipolito V, D’Alpino PH (2015) Mechanical properties of composites as functions of the syringe storage temperature and energy dose. J Appl Oral Sci 23(2):120–128. doi: 10.1590/1678-775720130643
    Darwell B (2002) Resin restorative materials. In: Ltd WP (ed) Materials science for dentistry. 7th edn, Hong Kong, pp 115–145
    Palasuk J, Platt JA, Cho SD, Levon JA, Brown DT, Hovijitra ST (2013) Effect of surface treatments on microtensile bond strength of repaired aged silorane resin composite. Oper Dent 38(1):91–99. doi: 10.2341/11-057-L
    Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 26(5):471–482. doi: 10.1016/j.dental.2010.01.005
    Thiemig D, Bund A (2009) Influence of ethanol on the electrodeposition of Ni/Al2O3 nanocomposite films. Appl Surf Sci 255:4164–4170
    Clogston JD, Patri AK (2011) Zeta potential measurement. Methods Mol Biol 697:63–70. doi: 10.1007/978-1-60327-198-1_6
    Liu Q, Ding J, Chambers DE, Debnath S, Wunder SL, Baran GR (2001) Filler-coupling agent-matrix interactions in silica/polymethylmethacrylate composites. J Biomed Mater Res 57(3):384–393. doi: 10.1002/1097-4636(20011205)57:3<384::AID-JBM1181>3.0.CO;2-F
    Larsson M, Hill A, Duffy J (2012) Suspension stability; why particle size, zeta potential and rheology are important. In: Annual transactions of the Nordc Rheology Society, vol 20. pp 209–214
    Shah MB, Ferracane JL, Kruzic JJ (2009) Mechanistic aspects of fatigue crack growth behavior in resin based dental restorative composites. Dent Mater 25(7):909–916. doi: 10.1016/j.dental.2009.01.097
    D’Alpino PH, Vismara MV, Gonzalez AH, Graeff CF (2014) Free radical entrapment and crystallinity of resin composites after accelerated aging as a function of the expiration date. J Mech Behav Biomed Mater 36:82–89. doi: 10.1016/j.jmbbm.2014.04.009