Ver registro no DEDALUS
Exportar registro bibliográfico

Sobre G-aplicações entre esferas em cohomologia e uma representação do Grafo de Reeb como subcomplexo de uma variedade (2016)

  • Authors:
  • USP affiliated authors: SILVA, NELSON ANTONIO - ICMC
  • USP Schools: ICMC
  • Sigla do Departamento: SMA
  • Subjects: TOPOLOGIA ALGÉBRICA; COHOMOLOGIA
  • Keywords: Borsuk-Ulam; Borsuk-Ulam; Bourgin-Yang; Bourgin-Yang; Cohomology sphere; Esfera em cohomologia; Grafo de Reeb; Length; Length; Reeb Graph; Teorema de Borsuk-Ulam
  • Language: Português
  • Abstract: Bartsch (BARTSCH, 1993) introduziu uma teoria de índice cohomológico, conhecida como o length, para G-espaços, no qual G é um grupo de Lie compacto. Apresentamos o cálculo do length de G-espaços os quais são esferas de cohomologia e G =('Z IND. 2')POT. k', ('Z IND. p)POT. k' ou ('S POT. 1')POT. k', k ≥ 1. Como consequências, obtemos um teorema de Borsuk-Ulam neste contexto e damos condições suficientes para a existência de aplicações G-equivariantes entre uma esfera de cohomologia e uma esfera de representação quando G = ('Z IND. p)POT. k'. Também, uma versão Bourgin-Yang do teorema de Borsuk-Ulam é apresentada. Como segunda parte desta tese, uma nova definição do grafo de Reeb R( f ) de uma função suave f : M →R com pontos críticos isolados, como um subcomplexo de M é dada. Para isto, um complexo 1-dimensional 'Gamma'(f) mergulhado em M e equivalente por homotopia a R( f ) é construído. Como consequência, mostramos que para toda função f sobre uma variedade com grupo fundamental finito, o grafo de Reeb de f é uma árvore. Se 'pi IND. 1'(M) é um grupo abeliano, ou mais geralmente, um grupo “amenable” 1, então R( f ) conterá no máximo um laço. Finalmente, é provado que o número de laços do grafo de Reeb de toda função sobre uma superfície Mg é estimado superiormente por g, o genus de Mg.Os resultados desta segunda parte estão publicados em (KALUBA; MARZANTOWICZ; SILVA, 2015).
  • Imprenta:
  • Data da defesa: 29.04.2016
  • Acesso online ao documento

    Online access or search this record in

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC30300051273T S586sg e.1
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Nelson Antonio; MARZANTOWICZ, Waclaw Boleslaw; MATTOS, Denise de. Sobre G-aplicações entre esferas em cohomologia e uma representação do Grafo de Reeb como subcomplexo de uma variedade. 2016.Universidade de São Paulo, São Carlos, 2016. Disponível em: < http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03012017-104140/ >.
    • APA

      Silva, N. A., Marzantowicz, W. B., & Mattos, D. de. (2016). Sobre G-aplicações entre esferas em cohomologia e uma representação do Grafo de Reeb como subcomplexo de uma variedade. Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03012017-104140/
    • NLM

      Silva NA, Marzantowicz WB, Mattos D de. Sobre G-aplicações entre esferas em cohomologia e uma representação do Grafo de Reeb como subcomplexo de uma variedade [Internet]. 2016 ;Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03012017-104140/
    • Vancouver

      Silva NA, Marzantowicz WB, Mattos D de. Sobre G-aplicações entre esferas em cohomologia e uma representação do Grafo de Reeb como subcomplexo de uma variedade [Internet]. 2016 ;Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-03012017-104140/

    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI: