Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil (2017)

  • Authors:
  • USP affiliated authors: MIRANDA, REGINA MAURA DE - EACH ; YAMASOE, MÁRCIA AKEMI - IAG ; ANDRADE, MARIA DE FATIMA - IAG
  • USP Schools: EACH; IAG; IAG
  • DOI: 10.1007/s10661-016-5659-7
  • Subjects: QUALIDADE DO AR; COMPOSIÇÃO QUÍMICA; AEROSSOL; ATMOSFERA; POLUIÇÃO ATMOSFÉRICA; ÁREAS METROPOLITANAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10661-016-5659-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10661-016-5659-7 (Fonte: Unpaywall API)

    Título do periódico: Environmental Monitoring and Assessment

    ISSN: 0167-6369,1573-2959



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Environmental Monitoring and Assessment

    ISSN: 0167-6369

    Citescore - 2017: 1.86

    SJR - 2017: 0.589

    SNIP - 2017: 0.848


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MIRANDA, Regina Maura de; LOPES, Fábio Juliano da Silva; ROSÁRIO, Nilton Manuel Évora do; et al. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil. Environmental Monitoring and Assessment, Dordrecht, v. 189, n. Ja 2017, p. art. 6 ( 1-15), 2017. Disponível em: < http://dx.doi.org/10.1007/s10661-015-4452-3 > DOI: 10.1007/s10661-016-5659-7.
    • APA

      Miranda, R. M. de, Lopes, F. J. da S., Rosário, N. M. É. do, Yamasoe, M. A., Landulfo, E., & Andrade, M. de F. (2017). The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil. Environmental Monitoring and Assessment, 189( Ja 2017), art. 6 ( 1-15). doi:10.1007/s10661-016-5659-7
    • NLM

      Miranda RM de, Lopes FJ da S, Rosário NMÉ do, Yamasoe MA, Landulfo E, Andrade M de F. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil [Internet]. Environmental Monitoring and Assessment. 2017 ; 189( Ja 2017): art. 6 ( 1-15).Available from: http://dx.doi.org/10.1007/s10661-015-4452-3
    • Vancouver

      Miranda RM de, Lopes FJ da S, Rosário NMÉ do, Yamasoe MA, Landulfo E, Andrade M de F. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil [Internet]. Environmental Monitoring and Assessment. 2017 ; 189( Ja 2017): art. 6 ( 1-15).Available from: http://dx.doi.org/10.1007/s10661-015-4452-3

    Referências citadas na obra
    Ackermann, J. (1998). The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study. Journal of Atmospheric and Oceanic Technology, 15, 1043–1050.
    Andrade, M. F., Miranda, R. M., Fornaro, A., Kerr, A., Oyama, B., André, P. A., & Saldiva, P. H. (2012). Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5, 79.
    Ansmann, A. F., Wagner, D., Althausen, D., Müller, D., Herber, A., & Wandinger, U. (2001). European pollution outbreaks during ACE 2: lofted aerosol plumes observed with Raman lidar at the Portuguese coast. Journal of Geophysical Research, 106, 20725–20734.
    Alam, K., Trautmann, T., Blaschke, T., & Majid, H. (2012). Aerosol optical and radiative properties during summer and winter seasons over Lahore and Karachi. Atmospheric Environment, 50, 234–245.
    Arana, A., Loureiro, A. L., Barbosa, H. M., Van Grieken, R., & Artaxo, P. (2014). Optimized energy dispersive X-ray fluorescence analysis of atmospheric aerosols collected at pristine and perturbed Amazon Basin sites. X-Ray Spectrometry, 43(4), 228–237.
    Carvalho, V. S. B., Freitas, E. D., Martins, L. D., Martins, J. A., Mazzoli, C. R., & Andrade, M. F. (2015). Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environmental Science and Policy, 47, 68–79.
    Castanho, A. D. A., & Artaxo, P. (2001). Wintertime and summertime São Paulo aerosol source apportionment study. Atmospheric Environment, 35, 4889–4902.
    Castanho, A. D. A., Martins, J. V., & Artaxo, P. (2008). MODIS aerosol optical depth retrievals with high spatial resolution over na urban area using a critical reflectance. Journal of Geophysical Research, 113, D0220.
    Cattrall, C., Reagan, J., Thome, K., & Dubovik, O. (2005). Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations. Journal of Geophysical Research, 110, D10S11.
    CETESB. (2015). São Paulo State Annual Air Quality Report (Relatório de qualidade do ar no Estado de São Paulo), 2014 (in Portuguese—available online at http://ar.cetesb.sp.gov.br/publicacoes-relatorios/ ). Nov 4, 2015
    Ciardini, V., Di Iorio, T., Di Liberto, L., Tirelli, C., Casasanta, G., Di Sarra, A., Fiocco, G., Fuà, D., & Cacciani, M. (2012). Seasonal variability of tropospheric aerosols in Rome. Atmospheric Research, 118, 205–214.
    Draxler, R. R., & Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine, 47, 295–308.
    Fernald, F. G., Herman, B. M., & Reagan, J. A. (1972). Determination of aerosol height distribution by lidar. Journal of Applied Meteorology, 11, 482–489.
    Franke, K., Ansmann, A., Müller, D., Althausen, D., Wagner, F., & Scheele, R. (2001). One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar. Geophysical Research Letters, 28, 4559–4562.
    Freitas, S. R., Longo, K. M., Dias, M. A. F. S., Dias, P. L. S., Chatfield, R., Prins, E., Artaxo, P., Grell, G. A., & Recuero, F. S. (2005). Monitoring the transport of biomass burning emissions in South America. Environmental Fluid Mechanics, 5, 135–167.
    Guerrero-Rascado, J. L., Ruiz, B., & Alados-Arboledas, L. (2008). Multispectral lidar characterization of the vertical structure of Saharan dust aerosol over southern Spain. Atmospheric Environment, 42, 2668–2681.
    Guerrero-Rascado, J. L., Landulfo, E., Antuña, J. C., Barbosa, H. M., Barja, B, Bastidas, A. E., Bedoya, A. E., da Costa, R. F., Estevan, R., Forno, R. N., Gouveia, D. A., Jiménez, C., Larroza, E. G., Lopes, F. J. S., Montilla-Rosero, E., Moreira, G. A., Nakaema, W. M., Nisperuza, D., Otero, L., Pallotta, J. V., Papandrea, S., Pawelko, E., Quel, E. J., Ristori P., Rodrigues, P. F., Salvador, J., Sánchez, M. F. & Silva, A. (2014). Towards an instrumental harmonization in the framework of LALINET: dataset of technical specifications, Proc. SPIE 9246, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X, 92460O. doi: 10.1117/12.2066873 .
    Guerrero-Rascado, J. L., Landulfo, E., Antuña, J. C., Barbosa, H. M. J., Barja, B., Bastidas, A. E., Bedoya, A. E., Costa, R., Estevan, R., Forno, R. N., Gouveia, D. A., Jimenez, C., Larroza, E. G., Lopes, F. J. S., Montilla-Rosero, E., Moreira, G. A., Nakaema, W. M., Nisperuza, D., Alegria, D., Manera, M., Otero, L., Papandrea, S., Pallota, J. V., Pawelko, E., Quel, E. J., Ristori, P., Rodrigues, P. F., Salvador, J., Sanchez, M., & Silva, A. (2016). Latin American Lidar Network (LALINET): diagnosis on network instrumentation. Journal of Atmospheric and Solar - Terrestrial Physics, 138–139, 112–120.
    Gioia, S. M. C. L., Babinski, M., Weiss, D. J., & Kerr, A. A. F. S. (2010). Insights into the dynamics and sources of atmospheric lead and particulate matter in São Paulo, Brazil, from high temporal resolution sampling. Atmospheric Research, 98, 478–485.
    Harrison, L., Michalsky, J., & Berndt, J. (1994). Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements. Applied Optics, 33(22), 5118–5125.
    INPE 2016. National Institute for Space research. Portal for the monitoring of vegetation fires. Available at http://www.inpe.br/queimadas March 21, 2016.
    IPCC (2013). Climate change 2013: the physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press 1535 pp.
    Klett, J. D. (1981). Stable analytic inversion solution for processing lidar returns. Applied Optics, 20, 211–220.
    Klett, J. D. (1985). Lidar inversion with variable backscatter/extinction ratios. Applied Optics, 24, 1638–1643.
    Landulfo, E., Papayannis, A., Artaxo, P., Castanho, A. D. A., de Freitas, A. Z., Ouza, R. F., Vieira Junior, N. D., Jorge, M. P. M. P., Sánchez-Ccoyllo, O. R., & Moreira, D. S. (2003). Synergetic measurements of aerosols over Sao Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season. Atmospheric Chemistry and Physics, 3, 1523–1539.
    Landulfo, E. & Lopes, F. J. S. (2009). Initial approach in biomass burning aerosol transport tracking with CALIPSO and MODIS satellites, sunphotometer, and a backscatter lidar system in Brazil. In: Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing V, 2009, Bellingham. Proceedings of SPIE—Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing V, v. 7479. p. 747905–1–747905-9.
    Liu, Y., Jia, R., Dai, T., Xie, Y., & Shi, G. (2014). A review of aerosol optical properties and radiative effects. Journal of Meteorological Research, 28, 1003–1028.
    Lopes, F.J.S., Moreira, G. A., Rodrigues, P. F., Guerrero-Rascado, J. L., Andrade, M. F., Landulfo, E. (2014). Lidar measurements of tropospheric aerosol and water vapor profiles during the winter season campaigns over the metropolitan area of São Paulo—Brazil. In: Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X, 2014, Amsterdam. Proceedings of SPIE - Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X, 92460H, doi: 10.1117/12.2067374 .
    Marenco, F., Santacesaria, V., Bais, A., Balis, D., di Sarra, D., Papayannis, A., & Zerefos, C. S. (1997). Optical properties of tropospheric aerosols determined by lidar and spectrophotometric measurements (PAUR campaign). Applied Optics, 36, 6785–6886.
    Marple, V. A., Kenneth, L. R., & Steven, M. B. (1986). A microorifice uniform deposit impactor (MOUDI): description, calibration and use. Journal of Aerosol Science, 17, 489.
    Miranda, R. M., Andrade, M. F., Fornaro, A., Astolfo, R., André, P. A., & Saldiva, P. H. (2012). Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Quality, Atmosphere and Health, 5, 63.
    Molnár, A., & Mézáros, E. M. (2001). On the relation between the size and chemical composition of aerosol particles and their optical properties. Atmospheric Environment, 25, 5053–5058.
    Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U., Althausen, D., & Pisani, G. (2007). Aerosol-type-dependent lidar ratios observed with Raman lidar. Journal of Geophysical Research, 112, D16202.
    Olcese, L. E., Palancar, G. G., & Toselli, B. M. (2014). Aerosol optical properties in central Argentina. Journal of Aerosol Science, 68, 25–37.
    Omar, A. H., Won, J. G., Winker, D. M., Yoon, S. C., Dubovik, O., & McCormick, M. P. (2005). Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. Journal of Geophysical Research, 110, D10S14.
    Omar, A. H., Winker, D. M., Kittaka, C., Vaughan, M. A., Liu, Z., Hu, Y., Trepte, C. R., Rogers, R. R., Ferrare, R. A., Lee, K., Kuehn, R. E., & Hostetler, C. A. (2009). The CALIPSO automated aerosol classification and lidar ratio selection algorithm. Journal Atmospheric Oceanic Technology, 26, 1994–2014.
    Rosário, N. M. E., Yamasoe, M. A., Sayão, A., & Siqueira, R. (2008). Multifilter rotating shadowband radiometer calibration for spectral aerosol optical depth retrievals over São Paulo City, Brazil. Applied Optics, 47, 1171.
    Seinfeld, J. H., & Pandis, S. N. (2006). Atmospheric chemistry and physics: from air pollution to climate change. New York: Wiley.
    Siva Dias, M. A. F., Dias, J., Carvalho, L. M. V., Freitas, E. D., & Silva Dias, P. L. (2013). Changes in extreme daily rainfall for São Paulo, Brazil. Climatic Change, 116, 705–722.
    Souza, D. Z., Vasconcellos, P. C., Lee, H., Aurela, M., Saarnio, K., Teinila, K., & Hillamo, R. (2014). Composition of PM2.5 and PM10 collected at urban sites in Brazil. Aerosol and Air Quality Research, 14, 168–176.
    Sugahara, S., Rocha, R. P., & Silveira, R. (2008). Non-stationary frequency analysis of extreme daily rainfall in São Paulo, Brazil. International Journal of Climatology, 29, 1339–1349.
    Vasconcellos, E. A. (2005). Urban change, mobility and transport in São Paulo: three decades, three cities. Transport Policy, 12, 91–104.
    Zawadzka, O., Markowicz, K. M., Pietruczuk, A., Zielinski, T., & Jaroslawski, J. (2013). Impact of urban pollution emitted in Warsaw on aerosol properties. Atmospheric Environment, 69, 15–28.
    Zdun, A., Rozwadowska, A., & Kratzer, S. (2011). Seasonal variability in the optical properties of Baltic aerosols. Oceanologia, 53(1), 7–34.