Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

A systematic comparative evaluation of biclustering techniques (2017)

  • Authors:
  • USP affiliated authors: CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
  • USP Schools: ICMC
  • DOI: 10.1186/s12859-017-1487-1
  • Subjects: INTELIGÊNCIA ARTIFICIAL; RECONHECIMENTO DE PADRÕES; BIOINFORMÁTICA; EXPRESSÃO GÊNICA
  • Keywords: Clustering; Biclustering
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1186/s12859-017-1487-1 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1186/s12859-017-1487-1 (Fonte: Unpaywall API)

    Título do periódico: BMC Bioinformatics

    ISSN: 1471-2105

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: BMC Bioinformatics

    ISSN: 1471-2105

    Citescore - 2017: 2.49

    SJR - 2017: 1.479

    SNIP - 2017: 0.878


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2800573-10PROD-2800573
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PADILHA, Victor A; CAMPELLO, Ricardo José Gabrielli Barreto. A systematic comparative evaluation of biclustering techniques. BMC Bioinformatics, BioMed Central, London, v. 18, p. 1-25, 2017. Disponível em: < http://dx.doi.org/10.1186/s12859-017-1487-1 > DOI: 10.1186/s12859-017-1487-1.
    • APA

      Padilha, V. A., & Campello, R. J. G. B. (2017). A systematic comparative evaluation of biclustering techniques. BMC Bioinformatics, 18, 1-25. doi:10.1186/s12859-017-1487-1
    • NLM

      Padilha VA, Campello RJGB. A systematic comparative evaluation of biclustering techniques [Internet]. BMC Bioinformatics. 2017 ; 18 1-25.Available from: http://dx.doi.org/10.1186/s12859-017-1487-1
    • Vancouver

      Padilha VA, Campello RJGB. A systematic comparative evaluation of biclustering techniques [Internet]. BMC Bioinformatics. 2017 ; 18 1-25.Available from: http://dx.doi.org/10.1186/s12859-017-1487-1

    Referências citadas na obra
    Zhang A. Advanced analysis of gene expression microarray data. Singapore: World Scientific; 2006.
    Wang Z, Gerstein M, Snyder M. Rna-seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009; 10(1):57–63.
    Turner H, Bailey T, Krzanowski W. Improved biclustering of microarray data demonstrated through systematic performance tests. Comput Stat Data Anal. 2005; 48(2):235–54.
    Jiang D, Tang C, Zhang A. Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng. 2004; 16(11):1370–86.
    Madeira SC, Oliveira AL. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinforma. 2004; 1(1):24–45.
    Tanay A, Sharan R, Shamir R. Discovering statistically significant biclusters in gene expression data. Bioinformatics. 2002; 18(suppl 1):136–44.
    Jaskowiak PA, Campello RJ, Costa Filho IG. Proximity measures for clustering gene expression microarray data: a validation methodology and a comparative analysis. IEEE/ACM Trans Comput Biol Bioinforma. 2013; 10(4):845–57.
    Jaskowiak PA, Campello RJ, Costa IG. On the selection of appropriate distances for gene expression data clustering. BMC Bioinforma. 2014; 15(Suppl 2):2.
    Cheng Y, Church GM. Biclustering of expression data. In: Proceedings of the 8th International Conference on Intelligence Systems for Molecular Biology. Palo Alto: Association for the Advancement of Artificial Intelligence (AAAI): 2000. p. 93–103.
    Gu J, Liu JS. Bayesian biclustering of gene expression data. BMC Genomics. 2008; 9(Suppl 1):4.
    Tanay A, Sharan R, Shamir R. Biclustering algorithms: A survey. Handb Comput Mol Biol. 2005; 9:26–1.
    Busygin S, Prokopyev O, Pardalos PM. Biclustering in data mining. Comput Oper Res. 2008; 35(9):2964–87.
    Hartigan JA. Direct clustering of a data matrix. J Am Stat Assoc. 1972; 67(337):123–9.
    Pontes B, Giráldez R, Aguilar-Ruiz JS. Biclustering on expression data: A review. J Biomed Inform. 2015; 57:163–80.
    Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, Gruissem W, Hennig L, Thiele L, Zitzler E. A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics. 2006; 22(9):1122–9.
    Bozdağ D, Kumar AS, Catalyurek UV. Comparative analysis of biclustering algorithms. In: Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology. New York: Association for Computing Machinery (ACM): 2010. p. 265–74.
    Eren K, Deveci M, Küçüktunç O, Çatalyürek ÜV. A comparative analysis of biclustering algorithms for gene expression data. Brief Bioinform. 2013; 14(3):279–92.
    Horta D, Campello RJGB. Similarity measures for comparing biclusterings. IEEE/ACM Trans Comput Biol Bioinforma. 2014; 11(5):942–54.
    Patrikainen A, Meila M. Comparing subspace clusterings. IEEE Trans Knowl Data Eng. 2006; 18(7):902–16.
    Campello RJGB. Generalized external indexes for comparing data partitions with overlapping categories. Pattern Recogn Lett. 2010; 31(9):966–75.
    Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms. Cambridge: MIT Press; 2009.
    Ben-Dor A, Chor B, Karp R, Yakhini Z. Discovering local structure in gene expression data: the order-preserving submatrix problem. J Comput Biol. 2003; 10(3–4):373–84.
    Murali T, Kasif S. Extracting conserved gene expression motifs from gene expression data. In: Pacific Symposium on Biocomputing. Stanford: Stanford Medical Informatics: 2003. p. 77–88.
    Bergmann S, Ihmels J, Barkai N. Iterative signature algorithm for the analysis of large-scale gene expression data. Phys Rev E. 2003; 67(3):031902.
    Cho H, Dhillon IS, Guan Y, Sra S. Minimum sum-squared residue co-clustering of gene expression data. In: Sdm. Philadelphia: SIAM: 2004. p. 3.
    Cho H, Dhillon IS. Coclustering of human cancer microarrays using minimum sum-squared residue coclustering. IEEE/ACM Trans Comput Biol Bioinforma. 2008; 5(3):385–400.
    Li G, Ma Q, Tang H, Paterson AH, Xu Y. Qubic: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res. 2009; 37:491.
    Huttenhower C, Mutungu KT, Indik N, Yang W, Schroeder M, Forman JJ, Troyanskaya OG, Coller HA. Detailing regulatory networks through large scale data integration. Bioinformatics. 2009; 25(24):3267–74.
    Bozdağ D, Parvin JD, Catalyurek UV. A biclustering method to discover co-regulated genes using diverse gene expression datasets. In: Bioinformatics and Computational Biology. Berlin: Springer: 2009. p. 151–63.
    Shabalin AA, Weigman VJ, Perou CM, Nobel AB. Finding large average submatrices in high dimensional data. Annals Appl Stat. 2009; 3:985–1012.
    Rodriguez-Baena DS, Perez-Pulido AJ, Aguilar JS. A biclustering algorithm for extracting bit-patterns from binary datasets. Bioinformatics. 2011; 27(19):2738–45.
    Serin A, Vingron M. Debi: Discovering differentially expressed biclusters using a frequent itemset approach. Algorithms Mol Biol. 2011; 6(1):18.
    Chaturvedi A, Carroll JD. An alternating combinatorial optimization approach to fitting the indclus and generalized indclus models. J Classif. 1994; 11(2):155–70.
    Lazzeroni L, Owen A, et al. Plaid models for gene expression data. Stat Sin. 2002; 12(1):61–86.
    Kluger Y, Basri R, Chang JT, Gerstein M. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 2003; 13(4):703–16.
    Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, Kasim A, Khamiakova T, Van Sanden S, Lin D, Talloen W, et al. Fabia: factor analysis for bicluster acquisition. Bioinformatics. 2010; 26(12):1520–7.
    Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N. Revealing modular organization in the yeast transcriptional network. Nat Genet. 2002; 31(4):370–7.
    Edgar R, Domrachev M, Lash AE. Gene expression omnibus: Ncbi gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30(1):207–10.
    de Souto MC, Costa IG, de Araujo DS, Ludermir TB, Schliep A. Clustering cancer gene expression data: a comparative study. BMC Bioinforma. 2008; 9(1):1.
    Eren K. Application of biclustering algorithms to biological data. Columbus: The Ohio State University; 2012. Masters’ thesis, https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:osu1332533492 .
    Csárdi G, Kutalik Z, Bergmann S. Modular analysis of gene expression data with r. Bioinformatics. 2010; 26(10):1376–7.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. Nat Genet. 2000; 25(1):25–9.
    Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27–30.
    Yu G, Wang LG, Han Y, He QY. clusterprofiler: an r package for comparing biological themes among gene clusters. OMICS J Integr Biol. 2012; 16(5):284–7. doi: http://dx.doi.org/10.1089/omi.2011.0118 .
    Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med. 1990; 9(7):811–8.
    Brouwer RK. Extending the rand, adjusted rand and jaccard indices to fuzzy partitions. J Intell Inf Syst. 2009; 32(3):213–35.
    Horta D, Campello RJGB. Comparing hard and overlapping clusterings. J Mach Learn Res. 2015; 16:2949–97.
    Kaiser S, Leisch F. A Toolbox for Bicluster Analysis in R. Munich: Ludwig-Maximilians-Universität München (LMU); 2008. Technical Report, https://epub.ub.uni-muenchen.de/3293/ .
    Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Matthieu B, Perrot M, Duchesnay É. Scikit-learn: Machine learning in python. J Mach Learn Res. 2011; 12:2825–30.
    Barkow S, Bleuler S, Prelić A, Zimmermann P, Zitzler E. Bicat: a biclustering analysis toolbox. Bioinformatics. 2006; 22(10):1282–3.
    Sharan R, Maron-Katz A, Shamir R. Click and expander: a system for clustering and visualizing gene expression data. Bioinformatics. 2003; 19(14):1787–99.
    Yang J, Wang W, Wang H, Yu P. δ-clusters: Capturing subspace correlation in a large data set. In: Proceedings of the 18th International Conference on Data Engineering. New York: Institute of Electrical and Electronics Engineers (IEEE): 2002. p. 517–28.
    Yang J, Wang H, Wang W, Yu P. Enhanced biclustering on expression data. In: Proceedings of the Third IEEE Symposium on Bioinformatics and Bioengineering. IEEE: 2003. p. 321–7.
    Yang J, Wang H, Wang W, Yu PS. An improved biclustering method for analyzing gene expression profiles. Int J Artif Intell Tools. 2005; 14(05):771–89.
    Liu X, Wang L. Computing the maximum similarity bi-clusters of gene expression data. Bioinformatics. 2007; 23(1):50–6.
    Ayadi W, Elloumi M, Hao JK. Bicfinder: a biclustering algorithm for microarray data analysis. Knowl Inf Syst. 2012; 30(2):341–58.