Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation (2017)

  • Authors:
  • USP affiliated authors: LEMOS, JOSE BENEDITO DIAS - FO ; WATANABE, II SEI - ICB ; BRITTO, LUIZ ROBERTO GIORGETTI DE - ICB ; CHACUR, MARUCIA - ICB
  • USP Schools: FO; ICB; ICB; ICB
  • DOI: 10.1007/s10103-017-2181-2
  • Subjects: NERVO TRIGÊMEO; RATOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s10103-017-2181-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10103-017-2181-2 (Fonte: Unpaywall API)

    Título do periódico: Lasers in Medical Science

    ISSN: 0268-8921,1435-604X



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Lasers in Medical Science

    ISSN: 0268-8921

    Citescore - 2017: 2.14

    SJR - 2017: 0.713

    SNIP - 2017: 1.067


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100124986PC ICB BMB SEP 2017
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MARTINS, Daniel Oliveira; SANTOS, Fabio Martinez; CIENA, Adriano Polican; et al. Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation. Lasers in Medical Science, London, Springer U K, p. 1-8, 2017. DOI: 10.1007/s10103-017-2181-2.
    • APA

      Martins, D. O., Santos, F. M., Ciena, A. P., Watanabe, I. -S., Britto, L. R. G., Lemos, J. B. D., & Chacur, M. (2017). Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation. Lasers in Medical Science, 1-8. doi:10.1007/s10103-017-2181-2
    • NLM

      Martins DO, Santos FM, Ciena AP, Watanabe I-S, Britto LRG, Lemos JBD, Chacur M. Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation. Lasers in Medical Science. 2017 ; 1-8.
    • Vancouver

      Martins DO, Santos FM, Ciena AP, Watanabe I-S, Britto LRG, Lemos JBD, Chacur M. Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: effects of photobiomodulation. Lasers in Medical Science. 2017 ; 1-8.

    Referências citadas na obra
    Raimondo S et al (2011) Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat 193(4):334–40
    Mendonca AC, Barbieri CH, Mazzer N (2003) Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats. J Neurosci Methods 129(2):183–90
    Anders JJ, Geuna S, Rochkind S (2004) Phototherapy promotes regeneration and functional recovery of injured peripheral nerve. Neurol Res 26(2):233–9
    Tucker BA, Mearow KM (2008) Peripheral sensory axon growth: from receptor binding to cellular signaling. Can J Neurol Sci 35(5):551–66
    Wang X et al (2011) Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination. Brain Res 1383:71–80
    Thompson DM, Buettner HM (2001) Schwann cell response to micropatterned laminin surfaces. Tissue Eng 7(3):247–65
    Chen ZL, Strickland S (2003) Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163(4):889–99
    Yuan A et al (2009) Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. J Neurosci 29(36):11316–29
    Al-Chalabi A, Miller CC (2003) Neurofilaments and neurological disease. Bioessays 25(4):346–55
    Walker KL et al (2001) Loss of neurofilaments alters axonal growth dynamics. J Neurosci 21(24):9655–66
    Shao Y et al (2002) Effect of nerve growth factor on changes of myelin basic protein and functional repair of peripheral nerve following sciatic nerve injury in rats. Chin J Traumatol 5(4):237–40
    Boyce VS et al (2007) Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats. J Neurophysiol 98(4):1988–96
    Sasaki M et al (2009) BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29(47):14932–41
    Petruska JC, Mendell LM (2004) The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci Lett 361(1–3):168–71
    Zochodne DW (2000) The microenvironment of injured and regenerating peripheral nerves. Muscle Nerve Suppl 9:S33–8
    de Oliveira Martins D et al (2013) Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: possible involvement of neurotrophins. J Neurotrauma 30(6):480–6
    Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–10
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54
    Ciena AP et al (2012) Fine structure of myotendinous junction between the anterior belly of the digastric muscle and intermediate tendon in adults rats. Micron 43(2–3):258–62
    da Silva JT et al (2015) Neural mobilization promotes nerve regeneration by nerve growth factor and myelin protein zero increased after sciatic nerve injury. Growth Factors 33(1):8–13
    Watanabe I, Yamada E (1983) The fine structure of lamellated nerve endings found in the rat gingiva. Arch Histol Jpn 46(2):173–82
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–5
    Snedecor GW, Sokal RR, Rohlf FJ (1946) Statistical methods biometry. 4 ed. Ames, ed. W.H. Freeman & Co. New York: Owa State University Press. p.859
    Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63
    Yonehara N, Kudo C, Kamisaki Y (2003) Involvement of NMDA-nitric oxide pathways in the development of tactile hypersensitivity evoked by the loose-ligation of inferior alveolar nerves in rats. Brain Res 963(1–2):232–43
    Chen ZL, Yu WM, Strickland S (2007) Peripheral regeneration. Annu Rev Neurosci 30:209–33
    Fortun J, Hill CE, Bunge MB (2009) Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett 456(3):124–32
    Toft A et al (2013) A comparative study of glial and non-neural cell properties for transplant-mediated repair of the injured spinal cord. Glia 61(4):513–28
    Webber CA et al (2011) Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia 59(10):1503–17
    Podratz JL, Rodriguez E, Windebank AJ (2001) Role of the extracellular matrix in myelination of peripheral nerve. Glia 35(1):35–40
    Tsiper MV, Yurchenco PD (2002) Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci 115(Pt 5):1005–15
    Mirsky R et al (2001) Regulation of genes involved in Schwann cell development and differentiation. Prog Brain Res 132:3–11
    Uziyel Y, Hall S, Cohen J (2000) Influence of laminin-2 on Schwann cell-axon interactions. Glia 32(2):109–21
    Rankin SL et al (2008) Neurotrophin-induced upregulation of p75NTR via a protein kinase C-delta-dependent mechanism. Brain Res 1217:10–24
    Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601–35
    Nakagawa M et al (2001) Schwann cell myelination occurred without basal lamina formation in laminin alpha2 chain-null mutant (dy3K/dy3K) mice. Glia 35(2):101–10
    Yang D et al (2005) Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol 168(4):655–66
    Yu WM et al (2005) Schwann cell-specific ablation of laminin gamma1 causes apoptosis and prevents proliferation. J Neurosci 25(18):4463–72
    Rotenstein L et al (2008) Characterization of the shark myelin Po protein. Brain Behav Evol 72(1):48–58
    Varejao AS et al (2004) Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. J Neurotrauma 21(11):1652–70
    Perrot R et al (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38(1):27–65
    Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(Suppl 1):S3–40