Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development (2018)

  • Authors:
  • USP affiliated authors: CRUZ, MARIO COSTA - ICB ; HIYANE, MEIRE IOSHIE - ICB ; SILVA, JOÃO SANTANA DA - FMRP ; CUCCOVIA, IOLANDA MIDEA - IQ ; CÂMARA, NIELS OLSEN SARAIVA - ICB
  • USP Schools: ICB; ICB; FMRP; IQ; ICB
  • DOI: 10.1007/s10787-017-0317-4
  • Subjects: MONÓCITOS; QUIMIOCINAS; INFLAMAÇÃO; TÉCNICAS DE DIAGNÓSTICO UROLÓGICO
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10787-017-0317-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10787-017-0317-4 (Fonte: Unpaywall API)

    Título do periódico: Inflammopharmacology

    ISSN: 0925-4692,1568-5608



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Inflammopharmacology

    ISSN: 0925-4692

    Citescore - 2017: 3.05

    SJR - 2017: 0.925

    SNIP - 2017: 1.144


  • How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BRAGA, Tárcio Teodoro; COSTA, Matheus Correa; SILVA, Reinaldo Correia; et al. CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development. Inflammopharmacology, Basel, v. 26, p. 403-411, 2018. Disponível em: < http://dx.doi.org/10.1007/s10787-017-0317-4 > DOI: 10.1007/s10787-017-0317-4.
    • APA

      Braga, T. T., Costa, M. C., Silva, R. C., Cruz, M. C., Hiyane, M. I., Silva, J. S. da, et al. (2018). CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development. Inflammopharmacology, 26, 403-411. doi:10.1007/s10787-017-0317-4
    • NLM

      Braga TT, Costa MC, Silva RC, Cruz MC, Hiyane MI, Silva JS da, Perez KR, Cuccovia IM, Câmara NOS. CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development [Internet]. Inflammopharmacology. 2018 ; 26 403-411.Available from: http://dx.doi.org/10.1007/s10787-017-0317-4
    • Vancouver

      Braga TT, Costa MC, Silva RC, Cruz MC, Hiyane MI, Silva JS da, Perez KR, Cuccovia IM, Câmara NOS. CCR2 contributes to the recruitment of monocytes and leads to kidney inflammation and fibrosis development [Internet]. Inflammopharmacology. 2018 ; 26 403-411.Available from: http://dx.doi.org/10.1007/s10787-017-0317-4

    Referências citadas na obra
    Adegunsoye A, Hrusch CL et al (2016) Skewed lung CCR4 to CCR6 CD4+ T cell ratio in idiopathic pulmonary fibrosis is associated with pulmonary function. Front Immunol 7:516
    Bohle A, Wehrmann M et al (1992) The long-term prognosis of the primary glomerulonephritides. A morphological and clinical analysis of 1747 cases. Pathol Res Pract 188(7):908–924
    Braga TT, Correa-Costa M et al (2012) MyD88 signaling pathway is involved in renal fibrosis by favoring a TH2 immune response and activating alternative M2 macrophages. Mol Med 18:1231–1239
    Braga TT, Correa-Costa M et al (2016) Early infiltration of p40IL12(+)CCR7(+)CD11b(+) cells is critical for fibrosis development. Immun Inflamm Dis 4(3):300–314
    Bromley SK, Mempel TR et al (2008) Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol 9(9):970–980
    Cao Q, Harris DC et al (2015) Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda) 30(3):183–194
    Cassado Ados A, D’Imperio Lima MR et al (2015) Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Front Immunol 6:225
    Chousterman BG, Boissonnas A et al (2016) Ly6Chigh monocytes protect against kidney damage during sepsis via a CX3CR1-dependent adhesion mechanism. J Am Soc Nephrol 27(3):792–803
    Dey A, Allen J et al (2014) Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophages. Front Immunol 5:683
    Eddy AA (2000) Molecular basis of renal fibrosis. Pediatr Nephrol 15(3–4):290–301
    Furuichi K, Wada T et al (2003a) CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 14(10):2503–2515
    Furuichi K, Wada T et al (2003b) Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury. J Am Soc Nephrol 14(4):1066–1071
    Furuichi K, Kaneko S et al (2009) Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin Exp Nephrol 13(1):9–14
    Geissmann F, Jung S et al (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82
    Geissmann F, Manz MG et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327(5966):656–661
    Giunti S, Barutta F et al (2010) Targeting the MCP-1/CCR2 System in diabetic kidney disease. Curr Vasc Pharmacol 8(6):849–860
    Griffith JW, Sokol CL et al (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702
    Han H, Zhu J et al (2017) Renal recruitment of B lymphocytes exacerbates tubulointerstitial fibrosis by promoting monocyte mobilization and infiltration after unilateral ureteral obstruction. J Pathol 241(1):80–90
    Kashyap S, Warner GM et al (2016) Blockade of CCR2 reduces macrophage influx and development of chronic renal damage in murine renovascular hypertension. Am J Physiol Renal Physiol 310(5):F372–F384
    Katagiri D, Hamasaki Y et al (2016) Interstitial renal fibrosis due to multiple cisplatin treatments is ameliorated by semicarbazide-sensitive amine oxidase inhibition. Kidney Int 89(2):374–385
    Kawamura E, Hisano S et al (2015) Immunohistological analysis for immunological response and mechanism of interstitial fibrosis in IgG4-related kidney disease. Mod Rheumatol 25(4):571–578
    Kim SM, Lee SH et al (2015) Targeting T helper 17 by mycophenolate mofetil attenuates diabetic nephropathy progression. Transl Res 166(4):375–383
    Kitagawa K, Wada T et al (2004) Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol 165(1):237–246
    Kitamoto K, Machida Y et al (2009) Effects of liposome clodronate on renal leukocyte populations and renal fibrosis in murine obstructive nephropathy. J Pharmacol Sci 111(3):285–292
    Kufareva I, Salanga CL et al (2015) Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol 93(4):372–383
    Lefebvre E, Moyle G et al (2016) Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One 11(6):e0158156
    Mehrotra P, Patel JB et al (2015) Th-17 cell activation in response to high salt following acute kidney injury is associated with progressive fibrosis and attenuated by AT-1R antagonism. Kidney Int 88(4):776–784
    Mehrotra P, Collett JA et al (2016) IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion:compensatory role of Natural Killer cells in athymic rats. Am J Physiol Renal Physiol ajprenal 00462:02016
    Menezes GB, Rezende RM et al (2008) Differential involvement of cyclooxygenase isoforms in neutrophil migration in vivo and in vitro. Eur J Pharmacol 598(1–3):118–122
    Mia S, Federico G et al (2015) Impact of AMP-activated protein kinase alpha1 deficiency on tissue Injury following unilateral ureteral obstruction. PLoS One 10(8):e0135235
    Nakashima H, Akahoshi M et al (2004) Absence of association between the MCP-1 gene polymorphism and histological phenotype of lupus nephritis. Lupus 13(3):165–167
    O’Connor T, Borsig L et al (2015) CCL2-CCR2 signaling in disease pathogenesis. Endocr Metab Immune Disord Drug Targets 15(2):105–118
    Peng X, Zhang J et al (2015a) CX3CL1-CX3CR1 Interaction Increases the Population of Ly6C-CX3CR1hi Macrophages Contributing to Unilateral Ureteral Obstruction-Induced Fibrosis. J Immunol 195(6):2797–2805
    Peng X, Zhang J et al (2015b) CX3CL1-CX3CR1 interaction increases the population of Ly6C(−)CX3CR1(hi) macrophages contributing to unilateral ureteral obstruction-induced fibrosis. J Immunol 195(6):2797–2805
    Porubsky S, Schmid H et al (2004) Influence of native and hypochlorite-modified low-density lipoprotein on gene expression in human proximal tubular epithelium. Am J Pathol 164(6):2175–2187
    Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928
    Sallusto F, Baggiolini M (2008) Chemokines and leukocyte traffic. Nat Immunol 9(9):949–952
    Sean Eardley K, Cockwell P (2005) Macrophages and progressive tubulointerstitial disease. Kidney Int 68(2):437–455
    Segerer S, Nelson PJ (2005) Chemokines in renal diseases. ScientificWorldJournal 5:835–844
    Segerer S, Nelson PJ et al (2000) Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11(1):152–176
    Serbina NV, Pamer EG (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7(3):311–317
    Sezgin I, Koksal B et al (2011) CCR2 polymorphism in chronic renal failure patients requiring long-term hemodialysis. Intern Med 50(21):2457–2461
    Shen B, Liu J et al (2016) CCR2 Positive Exosome Released by Mesenchymal Stem Cells Suppresses Macrophage Functions and Alleviates Ischemia/Reperfusion-Induced Renal Injury. Stem Cells Int 2016:1240301
    Silva RC, Terra FF et al (2016) Reduced expression of VAChT increases renal fibrosis. Pathophysiology 23(3):229–236
    Sipos A, Toma I et al (2007) Advances in renal (patho)physiology using multiphoton microscopy. Kidney Int 72(10):1188–1191
    Stroo I, Claessen N et al (2015) Deficiency for the chemokine monocyte chemoattractant protein-1 aggravates tubular damage after renal ischemia/reperfusion injury. PLoS One 10(4):e0123203
    Sung SA, Jo SK et al (2007) Reduction of renal fibrosis as a result of liposome encapsulated clodronate induced macrophage depletion after unilateral ureteral obstruction in rats. Nephron Exp Nephrol 105(1):e1–e9
    Trujillo G, O’Connor EC et al (2008) A novel mechanism for CCR4 in the regulation of macrophage activation in bleomycin-induced pulmonary fibrosis. Am J Pathol 172(5):1209–1221
    Tsou CL, Peters W et al (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117(4):902–909
    Vanhove, T., R. Goldschmeding, et al. (2016). “Kidney fibrosis: origins and interventions.” Transplantation
    Vielhauer V, Berning E et al (2004) CCR1 blockade reduces interstitial inflammation and fibrosis in mice with glomerulosclerosis and nephrotic syndrome. Kidney Int 66(6):2264–2278
    Weir MR (2015) CCR2 inhibition: a panacea for diabetic kidney disease? Lancet Diabetes Endocrinol 3(9):666–667
    Wick G, Grundtman C et al (2013) The immunology of fibrosis. Annu Rev Immunol 31:107–135
    Wynn TA, Chawla A et al (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455
    Xia Y, Entman ML et al (2013) CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis. PLoS One 8(10):e77493
    Yang J, Zhu F et al (2016) Continuous AMD3100 treatment worsens renal fibrosis through regulation of bone marrow derived pro-angiogenic cells homing and T-cell-related inflammation. PLoS ONE 11(2):e0149926
    Yuan A, Lee Y et al (2015) Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors. Am J Physiol Renal Physiol 308(5):F459–F472