Ver registro no DEDALUS
Exportar registro bibliográfico



Apocynin and Nox2 regulate NF-kB by modifying thioredoxin-1 redox-state (2016)

  • Authors:
  • DOI: 10.1038/srep34581
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/srep34581 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/srep34581 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:

    • Outras alternativas de URLs em Acesso Aberto:

        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher

        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository

    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2838057pcd 2838057 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      TREVELIN, Silvia Cellone; SANTOS, Célio Xavier dos; FERREIRA, Raphael Gomes; et al. Apocynin and Nox2 regulate NF-kB by modifying thioredoxin-1 redox-state. Scientific Reports, London, Nature Publishing Group, v. 6, 2016. Disponível em: < > DOI: 10.1038/srep34581.
    • APA

      Trevelin, S. C., Santos, C. X. dos, Ferreira, R. G., Lima, L. de S., Silva, R. L., Scavone, C., et al. (2016). Apocynin and Nox2 regulate NF-kB by modifying thioredoxin-1 redox-state. Scientific Reports, 6. doi:10.1038/srep34581
    • NLM

      Trevelin SC, Santos CX dos, Ferreira RG, Lima L de S, Silva RL, Scavone C, Curi R, Alves Filho JCF, Cunha TM, Roxo Júnior P, Cérvi MC, Laurindo FRM, Hothersall JS, Cobb AM, Zhang M, Ivetic A, Shah AM, Lopes LR, Cunha F de Q. Apocynin and Nox2 regulate NF-kB by modifying thioredoxin-1 redox-state [Internet]. Scientific Reports. 2016 ; 6Available from:
    • Vancouver

      Trevelin SC, Santos CX dos, Ferreira RG, Lima L de S, Silva RL, Scavone C, Curi R, Alves Filho JCF, Cunha TM, Roxo Júnior P, Cérvi MC, Laurindo FRM, Hothersall JS, Cobb AM, Zhang M, Ivetic A, Shah AM, Lopes LR, Cunha F de Q. Apocynin and Nox2 regulate NF-kB by modifying thioredoxin-1 redox-state [Internet]. Scientific Reports. 2016 ; 6Available from:

    Referências citadas na obra
    Dinauer, M. C. & Orkin, S. H. Chronic granulomatous disease. Annu Rev Med. 43, 117–124 (1992).
    Pollock, J. D. et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet. 9, 202–209 (1995).
    Deffert, C. et al. Hyperinflammation of chronic granulomatous disease is abolished by Nox2 reconstitution in macrophages and dendritic cells. J Pathol. 228, 341–350 (2012).
    Whitmore, L. C. et al. NOX2 protects against prolonged inflammation, lung injury, and mortality following systemic insults. J Innate Immun. 5, 565–580 (2013).
    Han, W. et al. NADPH oxidase limits lipopolysaccharide-induced lung inflammation and injury in mice through reduction-oxidation regulation of NF-kappaB activity. J Immunol. 190, 4786–4794 (2013).
    Brown, K. L. et al. ROS-deficient monocytes have aberrant gene expression that correlates with inflammatory disorders of chronic granulomatous disease. Clin Immunol. 129, 90–102 (2008).
    El-Benna, J., Dang, P. M. & Gougerot-Pocidalo, M. A. Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol. 30, 279–289 (2008).
    Ximenes, V. F., Kanegae, M. P., Rissato, S. R. & Galhiane, M. S. The oxidation of apocynin catalyzed by myeloperoxidase: Proposal for NADPH oxidase inhibition. Arch. Biochem. Biophys. 457, 134–141 (2007).
    Mora-Pale, M., Kwon, S. J., Linhardt, R. J. & Dordick, J. S. Trimer hydroxylated quinone derived from apocynin targets cysteine residues of p47phox preventing the activation of human vascular NADPH oxidase. Free Radic Biol Med. 52, 962–969 (2012).
    Ellson, C. et al. PtdIns3P binding to the PX domain of p40phox is a physiological signal in NADPH oxidase activation. EMBO J. 25, 4468–4478 (2006).
    Nishiyama, A. et al. Demonstration of the interaction of thioredoxin with p40phox, a phagocyte oxidase component, using a yeast two-hybrid system. Immunol Lett. 68, 155–159 (1999).
    Lu, J. & Holmgren, A. The thioredoxin antioxidante system. Free Radic Biol Med. 66, 75–87 (2014).
    Matthews, J. R. et al. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 20, 3821–3830 (1992).
    Kawai, T. & Akira, S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 13, 460–469 (2007).
    Hansen, R. E. & Winther, J. R. An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Anal Biochem. 394, 147–158 (2009).
    Du, Y. et al. Thioredoxin-1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. J. Biol. Chem. 288, 32241–32247 (2013).
    Go, Y. M. & Jones, D. P. Thioredoxin redox western analysis. In: Curr Protoc Toxicol. (ed. Maines, M. H. ). Ch. 17, unit 17.12 (John Wiley and Sons, 2009).
    Bjornstedt, M ., Kumar, S. & Holmgren, A. Selenite and selenodiglutathione. Reactions with thioredoxin systems. Methods Enzymol. 252, 209–219 (1995).
    Toledano, M. B. & Leonard, W. J. Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci USA 88, 4328–4332 (1991).
    Narasimhan, M. & Rajasekaran, N. Reductive potential- A savior turns stressor in protein aggregation cardiomyopathy. Biochimica et Biophysica Acta. 1852, 53–60 (2015).
    Lee, S. J. et al. The IKK-neutralizing compound Bay11 kills supereffector CD8 T cells by altering caspase-dependent activation-induced cell death. J Leukoc Biol. 85, 175–185 (2009).
    Becker, K., Gromer, S., Schiremer, R. H. & Muller, S. Thioredoxin reductase as a pathophysiological fator and drug target. Eur J Biochem. 267, 6118–6125 (2000).
    Citta, A. et al. Inhibition of thioredoxin reductase by lanthanum chloride. J Inorg Biochem. 117, 18–24 (2012).
    Smith, S. M. et al. Ebselen and congeners inhibit NADPH oxidase 2-dependent superoxide generation by interrupting the binding of regulatory subunits. Chemistry & Biology. 19, 752–763 (2012).
    Zhao, R., Masayasu, H. & Holmgren, A. Ebselen: a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant. Proceedings of the National Academy of Sciences of the United States of America. 99, 8579–8584 (2002).
    Angus, D. C. & Van Der Poll, T. Severe sepsis and septic shock. N Engl J Med. 369, 840–851 (2013).
    Böhrer, H. et al. Role of NFkB in the mortality of sepsis. J Clin Invest 100, 972–985 (1997).
    Souto, F. O. et al. Essential role of CCR2 in neutrophil tissue infiltration and multiple organ dysfunction in sepsis. Am J Respir Crit Care Med. 183, 234–242 (2011).
    Oakley, F. D., Abbott, D., Li, Q. & Engelhardt, J. F. Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal. 11, 1313–1333 (2009).
    Martins, P. S. et al. Expression of cell surface receptors and oxidative metabolism modulation in the clinical continuum of sepsis. Crit Care. 12, R25 (2008).
    Szakmany, T., Hauser, B. & Radermacher, P. N-Acetylcysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst Rev. 9, CD006616 (2012).
    Hernandes, M. S. et al. The role of Nox2-derived ROS in the development of cognitive impairment after sepsis. J Neuroinflammation. 27, 11–36 (2014).
    Weissmann, N. et al. Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nature communications. 3, 1–10 (2012).
    Gandhirajan, R. K. et al. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. The Journal of clinical investigation. 123, 887–902 (2013).
    Kim, K. et al. Nox2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood. 126, 1952–1964 (2015).
    Wang, Y. et al. Lanthanum inhibited the binding of LPS with monocyte and CD14 expression upregulation. Cell & Molecular Immunology. 1, 392–394 (2004).
    Kanegae, M. P. P., Fonseca, L. M., Brunetti, I. L., Silva, S. O. & Ximenes, V. F. The reactivity of ortho-methoxy-substitutes catechol radicals with sulfhydryl groups: Contribution for the comprehension of the mechanism of inhibiton of NADPH oxidase by apocynin. Biochemical Pharmacology. 74, 457–464 (2007).
    Alves-Filho, J. C. et al. Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis. Proc Natl Acad Sci USA 106, 4018–4023 (2009).
    Hernandes, M. S. et al. Eye enucleation activates the transcription nuclear factor kappa-B in the rat superior colliculus. Neurosci Lett. 521, 104–108 (2012).
    Moreno, S. E. et al. Systemic administration of interleukin-2 inhibits inflammatory neutrophil migration: role of nitric oxide. Br J Pharmacol. 148, 1060–1066 (2006).