Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

New strategy for testing efficacy of immunotherapeutic compounds for diabetes in vitro (2016)

  • Authors:
  • USP affiliated authors: ANTONINI, SONIR ROBERTO RAUBER - FMRP ; BONATO, VANIA LUIZA DEPERON - FMRP ; RIOS, WENDY MARTIN - FMRP ; SILVA, CELIO LOPES - FMRP
  • USP Schools: FMRP; FMRP; FMRP; FMRP
  • DOI: 10.1186/s12896-016-0270-0
  • Subjects: IMUNOTERAPIA; DIABETES MELLITUS; DOENÇAS AUTOIMUNES
  • Keywords: Diabetes; Heat-shock proteins; Regulatory T cells; Th17 cells; Immunotherapy; NOD mice
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1186/s12896-016-0270-0 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1186/s12896-016-0270-0 (Fonte: Unpaywall API)

    Título do periódico: BMC Biotechnology

    ISSN: 1472-6750

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: BMC Biotechnology

    ISSN: 1472-6750

    Citescore - 2017: 2.86

    SJR - 2017: 1.012

    SNIP - 2017: 0.918


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2842380pcd^2842380^Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PILEGGI, Gecilmara Salviato; CLEMENCIO, Aline Dayana; MALARDO, Thiago; et al. New strategy for testing efficacy of immunotherapeutic compounds for diabetes in vitro. BMC Biotechnology, London, v. 16, n. 1, 2016. Disponível em: < http://dx.doi.org/10.1186/s12896-016-0270-0 > DOI: 10.1186/s12896-016-0270-0.
    • APA

      Pileggi, G. S., Clemencio, A. D., Malardo, T., Antonini, S. R. R., Bonato, V. L. D., Rios, W. M., & Silva, C. L. (2016). New strategy for testing efficacy of immunotherapeutic compounds for diabetes in vitro. BMC Biotechnology, 16( 1). doi:10.1186/s12896-016-0270-0
    • NLM

      Pileggi GS, Clemencio AD, Malardo T, Antonini SRR, Bonato VLD, Rios WM, Silva CL. New strategy for testing efficacy of immunotherapeutic compounds for diabetes in vitro [Internet]. BMC Biotechnology. 2016 ; 16( 1):Available from: http://dx.doi.org/10.1186/s12896-016-0270-0
    • Vancouver

      Pileggi GS, Clemencio AD, Malardo T, Antonini SRR, Bonato VLD, Rios WM, Silva CL. New strategy for testing efficacy of immunotherapeutic compounds for diabetes in vitro [Internet]. BMC Biotechnology. 2016 ; 16( 1):Available from: http://dx.doi.org/10.1186/s12896-016-0270-0

    Referências citadas na obra
    Tisch R, McDevitt H. Insulin-dependent diabetes mellitus. Cell. 1996;85:291–7.
    Birk OS, Elias D, Weiss AS, Rosen A, van-der Zee R, Walker MD, et al. NOD mouse diabetes: the ubiquitous mouse hsp60 is a beta-cell target antigen of autoimmune T cells. J Autoimmun. 1996;9(2):159–66.
    Haskins K, Wegmann D. Diabetogenic T-cell clones. Diabetes. 1996;45(10):1299–305.
    Wang B, Gonzalez A, Benoist C, Mathis D. The role of CD8+ T cells in the initiation of insulin-dependent diabetes mellitus. Eur J Immunol. 1996;26(8):1762–9.
    Annunziato F, Romagnani S. Heterogeneity of human effector CD4+ T cells. Arthritis Res Ther. 2009;11(6):257.
    Roncarolo MG, Battaglia M. Regulatory-Tcell immunotherapy for tolererance to self antigens and alloantigens in humans. Nat Rev Immunol. 2007;7:585–98.
    Binder RJ. Functions of heat shock proteins in pathways of the innate and adaptive immune system. J Immunol. 2014;193(12):5765–71.
    Borges TJ, Wieten L, van Herwijnen MJ, Broere F, van der Zee R, Bonorino C, et al. The anti-inflammatory mechanisms of Hsp70. Front Immunol. 2012;3:95.
    van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol. 2005;5(4):318–30.
    Quintana FJ, Cohen IR. The HSP60 immune system network. Trends Immunol. 2011;32(2):89–95.
    Rezende RM, Oliveira RP, Medeiros SR, Gomes-Santos AC, Alves AC, Loli FG, et al. Hsp65-producing lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4 + LAP+ regulatory T cells. J Autoimmun. 2013;40:45–57.
    Santos-Junior RR, Sartori A, De Franco M, Filho OG, Coelho-Castelo AA, Bonato VL, et al. Immunomodulation and protection induced by DNA-hsp65 vaccination in an animal model of arthritis. Hum Gene Ther. 2005;16(11):1338–45.
    Fonseca DM, Bonato VL, Silva CL, Sartori A. Th1 polarized response induced by intramuscular DNA-HSP65 immunization is preserved in experimental atherosclerosis. Braz J Med Biol Res. 2007;40(11):1495–504.
    Santos Junior RR, Sartori A, Bonato VL, Coelho Castelo AA, Vilella CA, Zollner RL, et al. Immune modulation induced by tuberculosis DNA vaccine protects non-obese diabetic mice from diabetes progression. Clin Exp Immunol. 2007;149(3):570–8.
    Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E, et al. Therapy of tuberculosis in mice by DNA vaccination. Nature. 1999;400(6741):269–71.
    Michaluart P, Abdallah KA, Lima FD, Smith R, Moyses RA, Coelho V, et al. Phase I trial of DNA-hsp65 immunotherapy for advanced squamous cell carcinoma of the head and neck. Cancer Gene Ther. 2008;15(10):676–84.
    Fonseca DM, Wowk PF, Paula MO, Campos LW, Gembre AF, Turato WM, et al. Recombinant DNA immunotherapy ameliorate established airway allergy in a IL-10 dependent pathway. Clin Exp Allergy. 2012;42(1):131–43.
    Elias D, Cohen IR. Treatment of autoimmune diabetes and insulitis in NOD mice with heat shock protein 60 peptide p277. Diabetes. 1995;44(9):1132–8.
    Pozzilli P, Strollo R. Immunotherapy for Type 1 diabetes: getting beyond a negative first impression. Immunotherapy. 2012;4(7):655–8.
    You S, Chatenoud L. Autoimmune diabetes: an overview of experimental models and novel therapeutics. Methods Mol Biol. 2016;1371:117–42.
    Honkanen J, Nieminen JK, Gao R, Luopajarvi K, Salo HM, Ilonen J, Knip M, Otonkoski T, Vaarala O. IL-17 immunity in human type 1 diabetes. J Immunol. 2010;185(3):1959–67.
    Rajesh D, Zhou Y, Jankowska-Gan E, Roenneburg DA, Dart ML, Torrealba J, et al. Th1 and Th17 immunocompetence in humanized NOD/SCID/IL2rgammanull mice. Hum Immunol. 2010;71(6):551–9.
    Silva CL, Bonato VL, dos Santos-Junior RR, Zarate-Blades CR, Sartori A. Recent advances in DNA vaccines for autoimmune diseases. Expert Rev Vaccines. 2009;8(2):239–52.
    Coon B, An LL, Whitton JL, von Herrath MG. DNA immunization to prevent autoimmune diabetes. J Clin Invest. 1999;104(2):189–94.
    Fonseca DM, Wowk PF, Paula MO, Gembre AF, Baruffi MD, Fermino ML, et al. Requirement of MyD88 and Fas pathways for the efficacy of allergen-free immunotherapy. Allergy. 2015;70(3):275–84.
    Franco LH, Wowk PF, Silva CL, Trombone AP, Coelho-Castelo AA, Oliver C, et al. A DNA vaccine against tuberculosis based on the 65 kDa heat-shock protein differentially activates human macrophages and dendritic cells. Genet Vaccines Ther. 2008;6:3.
    Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4 + CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol. 1998;160(3):1212–8.
    Takahashi T, Sakaguchi S. Naturally arising CD25 + CD4+ regulatory T cells in maintaining immunologic self-tolerance and preventing autoimmune disease. Curr Mol Med. 2003;3(8):693–706.
    Thornton AM, Shevach EM. Suppressor effector function of CD4 + CD25+ immunoregulatory T cells is antigen nonspecific. J Immunol. 2000;164(1):183–90.
    Borges TJ, Porto BN, Teixeira CA, Rodrigues M, Machado FD, Ornaghi AP, et al. Prolonged survival of allografts induced by mycobacterial Hsp70 is dependent on CD4 + CD25+ regulatory T cells. PLoS One. 2010;5(12):e14264.
    Feuerer M, Hill JA, Mathis D, Benoist C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol. 2009;10(7):689–95.
    Gagliani N, Vesely MC, Iseppon A, Brockmann L, Xu H, Palm NW, et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 2015;523(7559):221–5.
    Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med. 1999;190(7):995–1004.
    Detanico T, Rodrigues L, Sabritto AC, Keisermann M, Bauer ME, Zwickey H, et al. Mycobacterial heat shock protein 70 induces interleukin-10 production: immunomodulation of synovial cell cytokine profile and dendritic cell maturation. Clin Exp Immunol. 2004;135(2):336–42.
    Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol. 2014;14(3):154–65.