Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds (2018)

  • Authors:
  • USP affiliated authors: PICCIONE, PAOLO - IME
  • USP Schools: IME
  • DOI: 10.1007/s00245-017-9405-5
  • Subjects: VARIEDADES RIEMANNIANAS
  • Keywords: Exponential Asymptotic Stability; Klein Gordon Equation; Non-compact Riemannian Manifolds; nonlinear and locally distributed damping
  • Language: Inglês
  • Imprenta:
  • Source:
  • Informações sobre o DOI: 10.1007/s00245-017-9405-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    Download do texto completo

    Tipo Nome do arquivo Tipo de acesso Link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BORTOT, C. A; CAVALCANTI, M. M; DOMINGOS CAVALCANTI, V. N; PICCIONE, Paolo. Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds. Applied Mathematics & Optimization[S.l.], Springer, v. 78, n. 2, p. 219–265, 2018. Disponível em: < http://dx.doi.org/10.1007/s00245-017-9405-5 > DOI: 10.1007/s00245-017-9405-5.
    • APA

      Bortot, C. A., Cavalcanti, M. M., Domingos Cavalcanti, V. N., & Piccione, P. (2018). Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds. Applied Mathematics & Optimization, 78( 2), 219–265. doi:10.1007/s00245-017-9405-5
    • NLM

      Bortot CA, Cavalcanti MM, Domingos Cavalcanti VN, Piccione P. Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds [Internet]. Applied Mathematics & Optimization. 2018 ; 78( 2): 219–265.Available from: http://dx.doi.org/10.1007/s00245-017-9405-5
    • Vancouver

      Bortot CA, Cavalcanti MM, Domingos Cavalcanti VN, Piccione P. Exponential asymptotic stability for the Klein Gordon equation on non-compact riemannian manifolds [Internet]. Applied Mathematics & Optimization. 2018 ; 78( 2): 219–265.Available from: http://dx.doi.org/10.1007/s00245-017-9405-5

    Referências citadas na obra
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
    Alabau-Boussouira, F.: Convexity and weighted inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51(1), 61–105 (2005)
    Bessa, G.P., Montenegro, F., Piccione, P.: Riemannian submersions with discrete spectrum. J. Geom. Anal. (to appear). arXiv:1001.0853
    Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Editura Academiei, Noordhoff International Publishing, Bucuresti Romania, Leyden (1976)
    Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)
    Brézis, H.: Análisis Funcional. Teoría y Aplicaciones. Alianza Editorial, S.A., Madrid (1984)
    Brézis, H.: Operateurs Maximaux Monotones et Semigroups de Contractions dans les Spaces de Hilbert. North Holland Publishing Co., Amsterdam (1973)
    Brézis, H.: Autumn Course On Semigoups, Theory and Applications. Lecture Notes taken by L. COHEN. International Center for Theoretical Physics, Triest (1984)
    Brézis, H.: Cazenave T. Nonlinear Evolution Equations. Preliminary Version of Chapters 1,2 and 3 and the Appendix (1994)
    Burq, N., Gérard, P.: Contrôle Optimal des équations aux dérivées partielles. Url: http://www.math.u-psud.fr/~burq/articles/coursX (2001)
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I.: Wellposedness and optimal decay rates for wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Uniform Stabilization of the wave equation on compact surfaces and locally distributed damping. Trans. AMS 361(9), 4561–4580 (2009)
    Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Soriano, J.A.: Asymptotic stability of the wave equation on compact manifolds and locally distributed damping: a sharp result, -. Arch. Ration. Mech. Anal. 197, 925–964 (2010)
    Cheeger, J., Colding, T.H.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144(1), 189–237 (1996)
    Christianson, H.: Semiclassical non-concetration near hyperbolic orbits. J. Funct. Anal. 246(2), 145–195 (2007)
    Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. II. Springer, Berlin (1990)
    Dehman, B., Lebeau, G., Zuazua, E.: Stabilization and control for the subcritical semilinear wave equation. Ann. Sci. École Norm. Sup. 36, 525–551 (2003)
    Do Carmo, M.P.: Riemannian geometry Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston (1992)
    Donnelly, H., Li, P.: Pure point spectrum and negative curvature for noncompact manifolds. Duke Math. J. 46, 497–503 (1979)
    Evans, L.C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, A.M.S
    Fukuoka, R.: Mollifier smoothing of tensor fields on differentiable manifolds and applications to Riemannian Geometry. arXiv:math.DG/0608230
    Greene, R.E., Wu, H.: $$C^\infty $$ C ∞ -approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. École Norm. Sup. 12(1), 47–84 (1979)
    Hebey, E.: Sobolev Space on Riemannian Manifolds. Springer, Berlin (1996)
    Hitrik, M.: Expansions and eigenfrequencies for damped wave equations. Journèes“Équations aux Dérivées Patielles” (Plestin-les-Gréves, 2001), Exp. No. VI, 10 pp., Univ. Nantes, Nantes (2001)
    Jorge, L.P., Xavier, F.: An inequality between the exterior diameter and the mean curvature of bounded immersions. Math. Z. 178, 77–82 (1981)
    Lasiecka, I., Triggiani, R., Yao, P.F.: An observability estimate in $$L^2 \times H^{-1}$$ L 2 × H - 1 for send order hyperbolic equations with variable coefficients. In: Control of Distributed Parameter and Stochastic systems. Kluwer (1999)
    Lasiecka, I., Tataru, D.: Uniform Boundary Stabilization of Semilinear Wave Equations with Nonlinear Boundary Damping. Lecture Notes in Pure and Applied Maths, vol. 142. Dekker, New York (1993)
    Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometric conditions. Appl. Math. Optim. 25, 189–224 (1992)
    Lions, J.L.: Contrôlabilité Exacte Pertubations et Stabilisation de Systèmes Distribués. Masson, Paris (1988)
    Lions, J.L., Magenes, E.: Non-homogeneous Boudary Value Problems and Applications. Springer, Berlin (1972)
    Milnor, J.: Lectures on the h-Cobordism Theorem. Princeton University Press, Princeton. Notes by L. Siebenmann and J. Sondow (1965)
    Pigola, S., Rigoli, M., Setti, A.: Maximum principle on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174(822) (2005)
    Rauch, J., Taylor, M.: Decay of solutions to n ondissipative hyperbolic systems on compact manifolds. Commun. Pure Appl. Math. 28(4), 501–523 (1975)
    Rauch, J., Taylor, M.: Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J. 24, 79–86 (1974)
    Simon, J.: Compact Sets in the Space $${\bf L}^p(0,T;B)$$ L p ( 0 , T ; B ) . Annali di Matematica pura ed applicata 146(1), 65–96 (1987)
    Taylor Michael, E.: Partial Differential Equations I. Basic Theory, 2nd edn. Springer, Berlin (2010)
    Triggiani, R., Yao, P.E.: Calerman estimates with no lower-Oder terms for general Riemannian wave equations. Global uniquenees and observability in one shot. Appl. Math. Optim. 46, 331–375 (2002)
    Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups. Scott, Foresman and Company, Glenview (1971)
    Yao, P., Lasiecka, I., Triggiani, R.: Inverse/observability estimates for second-order hiperbolic equations with variable coefficients. J. Math. Anal. Apl. 235, 13–57 (1999)
    Yao, P.: On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37(5), 1568–1599 (1999)
    Yao, P.: Modeling and control in vibrational and structural dynamics. A differential geometric approach. Chapman e Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton (2011). xiv+405 pp. ISBN: 978-1-4398-3455-8. (o livro dele)
    Yao, P., Liu, Y., Li, J.: Decay rates of the hyperbolic equation in an exterior domain with half-linear and nonlinear boundary dissipations. J. Syst. Sci. Complex. 29(3), 657–680 (2016)
    Zeidler, E.: Nonlinear Functional Analysis and its Aplications. Vol 2A: Linear Monotone Operators. Springer, Berlin (1990)
    Zuazua, E.: Exponential decay for the semilinear wave equation whith localized damping in unbounded domains. J. Math. Pures Appl. 70, 513–529 (1992)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2019