Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Nonintegrability of some Hamiltonian systems, scattering and analytic continuation (1994)

  • Authors:
  • USP affiliated authors: RAGAZZO, CLODOALDO GROTTA - IME
  • USP Schools: IME
  • DOI: 10.1007/bf02112316
  • Subjects: ANÁLISE GLOBAL; EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; SISTEMAS HAMILTONIANOS; SISTEMAS LAGRANGIANOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/bf02112316 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Informações sobre o Citescore
  • Título: Communications in Mathematical Physics

    ISSN: 0010-3616

    Citescore - 2017: 2.34

    SJR - 2017: 1.682

    SNIP - 2017: 1.796


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IME2845865-10PROD-2845865
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RAGAZZO, Clodoaldo Grotta. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation. Communications in Mathematical Physics, Heidelberg, Springer, v. 166, n. 2, p. 255-277, 1994. Disponível em: < http://projecteuclid.org/download/pdf_1/euclid.cmp/1104271610 > DOI: 10.1007/bf02112316.
    • APA

      Ragazzo, C. G. (1994). Nonintegrability of some Hamiltonian systems, scattering and analytic continuation. Communications in Mathematical Physics, 166( 2), 255-277. doi:10.1007/bf02112316
    • NLM

      Ragazzo CG. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation [Internet]. Communications in Mathematical Physics. 1994 ; 166( 2): 255-277.Available from: http://projecteuclid.org/download/pdf_1/euclid.cmp/1104271610
    • Vancouver

      Ragazzo CG. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation [Internet]. Communications in Mathematical Physics. 1994 ; 166( 2): 255-277.Available from: http://projecteuclid.org/download/pdf_1/euclid.cmp/1104271610

    Referências citadas na obra
    Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics. Encyclopaedia of Math Sciences v.3, Berlin: Springer-Verlag 1988
    Churchill R.C., Rod, D.L.: Pathology in dynamical systems III, Analytic Hamiltonians. J. Diff. Eqns.37, 351–373 (1980)
    Churchill, R.C., Rod, D.L.: Geometrical aspects of Ziglin's non-integirability theorem for complex Hamiltonian systems. J. Diff. Eqns.76, 91–114 (1988)
    Fedoryuk, M. V.: One-dimensional scattering in the quasi-classical approximation. Diff. Eqns.1, 483–495, 1201–1210 (1965)
    Grotta Ragazzo, C.: Chaos and integrability in a nonlinear wave equation. J. Dyn. Diff. Eq.6, 227–244, 4 (1994)
    Grotta Ragazzo, C., Koiller, J., Oliva, W.M.: Motion of massive vortices in two dimensions. To appear in J. Nonlinear Science (1994)
    Holmes, P.: Proof of nonintegrability for the Hénon-Heiles Hamiltonian near an exceptional integrable case. Physica5D, 335–347 (1982)
    Hénon, M., Heiles, C.: The applicability of the third integral of motion: Some numerical experiments. Astron. J.69, 73–79 (1964)
    Hille, E.: Ordinary Differential Equations in the Complex Domain. New York: Wiley-Interscience, 1976
    Ito, H.: Non-integrability of Hénon-Heiles system and a theorem of Ziglin. Kodai Math. J.8, 120–138 (1985)
    Ito, H.: A criterior for non-integrability of Hamiltonian systems with nonhomogeneous potentials. J. Appl. Math. Phys. (ZAMP)38, 459–476 (1987)
    Kay, I., Moses, H.E.: Reflectionless transmission through dielectrics and scattering potentials. J. Appl. Phys.27, 1503–1508 (1956)
    Kozlov, V.V.: Integrability and non-integrability in Hamiltonian mechanics. Russ. Math. Surv.38, 1–76 (1983)
    Landau, L.D., Lifshitz, E.M.: Quantum mechanics, nonrelativistic theory. Oxford: Pergamon Press, 1965
    Lerman, L.M.: Hamiltonioan systems with loops of a separatrix of a saddle-center. Sel. Math. Sov.10, 297–306 (1991); Originally published in “Metody kachestvennoî teorii differentsial'nykh uravneniî”. Gorkiî State University, 89–103 (1987)
    Mielke, A., Holmes, P., O'Reilly, O.: Cascades of homoclinic orbits to, and chaos near, a Hamiltonian saddle center. J. Dyn. Diff. Eqns.4, 95–126 (1992)
    Moser, J.: On the generalization of a theorem of Liapunoff. Comm. Pure Appl. Math.11, 257–271 (1958)
    Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton: Princeton University Press, 1973
    Morse, P., Feshbach, H.: Methods of Theoretical Physicsv.1. New York: McGraw-Hill, 1953
    Rüssmann, H.: Uber das verhalten analytischer Hamiltonscher differentialgleichungen in der nahe einer gleichgewichtslosung. Math. Ann.154, 285–300 (1964)
    Yoshida, H.: Non-integrability of the truncated Toda lattice Hamitonian at any order. Commun. Math. Phys.116, 529–538 (1988)
    Ziglin, S.L.: Branching of solutions and the nonexistence of first integrals in Hamiltonian mechanics. Funct. Anal. Appl.16, 181–189 (1989);17, 6–17 (1983)