Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Recombinant BCG expressing LTAK63 adjuvant induces superior protection against Mycobacterium tuberculosis (2017)

  • Authors:
  • USP affiliated authors: HIRATA, MARIO HIROYUKI - FCF ; SILVA, CELIO LOPES - FMRP ; LIMA, MARIA REGINA D'IMPERIO - ICB
  • USP Schools: FCF; FMRP; ICB
  • DOI: 10.1038/s41598-017-02003-9
  • Subjects: IMUNOLOGIA; TUBERCULOSE; MYCOBACTERIUM TUBERCULOSIS; ADJUVANTES IMUNOLÓGICOS; PROTEÍNAS RECOMBINANTES; VACINAS; CITOCININAS; CAMUNDONGOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-017-02003-9 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-017-02003-9 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository




        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH doi match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository




    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICB12100124876PC ICB BMI SEP 2017
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      NASCIMENTO, Ivan Pereira; SILVA, Célio Lopes; WINTER, Nathalie; et al. Recombinant BCG expressing LTAK63 adjuvant induces superior protection against Mycobacterium tuberculosis. Scientific Reports, London, v. 7, n. 1, p. 1-11, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-02003-9 > DOI: 10.1038/s41598-017-02003-9.
    • APA

      Nascimento, I. P., Silva, C. L., Winter, N., Gicquel, B., Mills, K. H. G., Pizza, M., et al. (2017). Recombinant BCG expressing LTAK63 adjuvant induces superior protection against Mycobacterium tuberculosis. Scientific Reports, 7( 1), 1-11. doi:10.1038/s41598-017-02003-9
    • NLM

      Nascimento IP, Silva CL, Winter N, Gicquel B, Mills KHG, Pizza M, Rappuoli R, Leite LCC, Rodriguez D, Santos CC dos, Amaral EP, Rofatto HK, Junqueira-Kipnis AP, Gonçalves EDC, Lima MRD'I, Hirata MH. Recombinant BCG expressing LTAK63 adjuvant induces superior protection against Mycobacterium tuberculosis [Internet]. Scientific Reports. 2017 ; 7( 1): 1-11.Available from: http://dx.doi.org/10.1038/s41598-017-02003-9
    • Vancouver

      Nascimento IP, Silva CL, Winter N, Gicquel B, Mills KHG, Pizza M, Rappuoli R, Leite LCC, Rodriguez D, Santos CC dos, Amaral EP, Rofatto HK, Junqueira-Kipnis AP, Gonçalves EDC, Lima MRD'I, Hirata MH. Recombinant BCG expressing LTAK63 adjuvant induces superior protection against Mycobacterium tuberculosis [Internet]. Scientific Reports. 2017 ; 7( 1): 1-11.Available from: http://dx.doi.org/10.1038/s41598-017-02003-9

    Referências citadas na obra
    World Health Organization releases. 2015 global report on tuberculosis. Breathe 11, 244–244 (2016).
    Zumla, A., Raviglione, M., Hafner, R. & von Reyn, C. F. Tuberculosis. The New England journal of medicine 368, 745–755, doi: 10.1056/NEJMra1200894 (2013).
    Aagaard, C., Dietrich, J., Doherty, M. & Andersen, P. TB vaccines: current status and future perspectives. Immunol Cell Biol 87, 279–286, doi: 10.1038/icb.2009.14 (2009).
    O’Garra, A. et al. The immune response in tuberculosis. Annual review of immunology 31, 475–527, doi: 10.1146/annurev-immunol-032712-095939 (2013).
    Hokey, D. A. & Ginsberg, A. The current state of tuberculosis vaccines. Human vaccines & immunotherapeutics 9, 2142–2146, doi: 10.4161/hv.25427 (2013).
    Kaufmann, S. H. Novel tuberculosis vaccination strategies based on understanding the immune response. Journal of internal medicine 267, 337–353, doi: 10.1111/j.1365-2796.2010.02216.x (2010).
    Sweeney, K. A. et al. A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med 17, 1261–1268, doi: 10.1038/nm.2420 (2011).
    Gupta, U. D., Katoch, V. M. & McMurray, D. N. Current status of TB vaccines. Vaccine 25, 3742–3751, doi: 10.1016/j.vaccine.2007.01.112 (2007).
    Arbues, A. et al. Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials. Vaccine 31, 4867–4873, doi: 10.1016/j.vaccine.2013.07.051 (2013).
    Lowrie, D. B. et al. Therapy of tuberculosis in mice by DNA vaccination. Nature 400, 269–271, doi: 10.1038/22326 (1999).
    Wang, C. C., Zhu, B., Fan, X., Gicquel, B. & Zhang, Y. Systems approach to tuberculosis vaccine development. Respirology 18, 412–420, doi: 10.1111/resp.12052 (2013).
    Kaufmann, S. H. Tuberculosis vaccine development at a divide. Current opinion in pulmonary medicine 20, 294–300, doi: 10.1097/MCP.0000000000000041 (2014).
    Abebe, F. & Bjune, G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clinical and experimental immunology 157, 235–243, doi: 10.1111/j.1365-2249.2009.03967.x (2009).
    Douce, G. et al. Genetically detoxified mutants of heat-labile toxin from Escherichia coli are able to act as oral adjuvants. Infection and immunity 67, 4400–4406 (1999).
    Pizza, M. et al. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19, 2534–2541, doi: 10.1016/S0264-410x(00)00553-3 (2001).
    Nascimento, I. P. et al. Recombinant Mycobacterium bovis BCG expressing pertussis toxin subunit S1 induces protection against an intracerebral challenge with live Bordetella pertussis in mice. Infection and immunity 68, 4877–4883, doi: 10.1128/iai.68.9.4877-4883.2000 (2000).
    Miyaji, E. N. et al. Induction of neutralizing antibodies against diphtheria toxin by priming with recombinant Mycobacterium bovis BCG expressing CRM(197), a mutant diphtheria toxin. Infection and immunity 69, 869–874, doi: 10.1128/IAI.69.2.869-874.2001 (2001).
    Mazzantini, R. P. et al. Adjuvant activity of Mycobacterium bovis BCG expressing CRM197 on the immune response induced by BCG expressing tetanus toxin fragment C. Vaccine 22, 740–746, doi: 10.1016/j.vaccine.2003.08.017 (2004).
    Christ, A. P. et al. Enhancement of Th1 lung immunity induced by recombinant Mycobacterium bovis Bacillus Calmette-Guerin attenuates airway allergic disease. American journal of respiratory cell and molecular biology 43, 243–252, doi: 10.1165/rcmb.2009-0040OC (2010).
    Chade, D. C. et al. Immunomodulatory effects of recombinant BCG expressing pertussis toxin on TNF-alpha and IL-10 in a bladder cancer model. Journal of experimental & clinical cancer research: CR 27, 78, doi: 10.1186/1756-9966-27-78 (2008).
    Andrade, P. M. et al. The therapeutic potential of recombinant BCG expressing the antigen S1PT in the intravesical treatment of bladder cancer. Urol Oncol 28, 520–525, doi: 10.1016/j.urolonc.2008.12.017 (2010).
    Marinaro, M. et al. Mucosal delivery of the human immunodeficiency virus-1 Tat protein in mice elicits systemic neutralizing antibodies, cytotoxic T lymphocytes and mucosal IgA. Vaccine 21, 3972–3981, doi: 10.1016/S0264-410X(03)00295-0 (2003).
    Dietrich, J. et al. Mucosal administration of Ag85B-ESAT-6 protects against infection with Mycobacterium tuberculosis and boosts prior bacillus Calmette-Guerin immunity. J Immunol 177, 6353–6360, doi: 10.4049/jimmunol.177.9.6353 (2006).
    Badell, E. et al. Protection against tuberculosis induced by oral prime with Mycobacterium bovis BCG and intranasal subunit boost based on the vaccine candidate Ag85B-ESAT-6 does not correlate with circulating IFN-gamma producing T-cells. Vaccine 27, 28–37, doi: 10.1016/j.vaccine.2008.10.034 (2009).
    Barnett, S. W. et al. Protection of macaques against vaginal SHIV challenge by systemic or mucosal and systemic vaccinations with HIV-envelope. Aids 22, 339–348, doi: 10.1097/QAD.0b013e3282f3ca57 (2008).
    Lewis, D. J. et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PloS one 4, e6999, doi: 10.1371/journal.pone.0006999 (2009).
    Amaral, E. P. et al. Pulmonary infection with hypervirulent Mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis. PLoS pathogens 10, e1004188, doi: 10.1371/journal.ppat.1004188 (2014).
    Zarate-Blades, C. R. et al. Evaluation of the overall IFN-gamma and IL-17 pro-inflammatory responses after DNA therapy of tuberculosis. Human vaccines & immunotherapeutics 9, 1093–1103, doi: 10.4161/hv.23417 (2013).
    Dhar, N., Rao, V. & Tyagi, A. K. Skewing of the Th1/Th2 responses in mice due to variation in the level of expression of an antigen in a recombinant BCG system. Immunol Lett 88, 175–184, doi: 10.1016/S0165-2478(03)00043-9 (2003).
    Weiner, J. 3rd & Kaufmann, S. H. Recent advances towards tuberculosis control: vaccines and biomarkers. Journal of internal medicine 275, 467–480, doi: 10.1111/joim.12212 (2014).
    Montagnani, C., Chiappini, E., Galli, L. & de Martino, M. Vaccine against tuberculosis: what’s new? BMC infectious diseases 14(Suppl 1), S2, doi: 10.1186/1471-2334-14-S1-S2 (2014).
    Rook, G. A., Hernandez-Pando, R. & Zumla, A. Tuberculosis due to high-dose challenge in partially immune individuals: a problem for vaccination? The Journal of infectious diseases 199, 613–618, doi: 10.1086/596654 (2009).
    Vizzini, A., Di Falco, F., Parrinello, D., Sanfratello, M. A. & Cammarata, M. Transforming Growth Factor beta (CiTGF-beta) gene expression is induced in the inflammatory reaction of Ciona intestinalis. Developmental and comparative immunology 55, 102–110, doi: 10.1016/j.dci.2015.10.013 (2015).
    L’Abbate, C. et al. TGF-beta-mediated sustained ERK1/2 activity promotes the inhibition of intracellular growth of Mycobacterium avium in epithelioid cells surrogates. PloS one 6, e21465, doi: 10.1371/journal.pone.0021465 (2011).
    Marcus, S. A., Steinberg, H. & Talaat, A. M. Protection by novel vaccine candidates, Mycobacterium tuberculosis Delta mosR and Delta echA7, against challenge with a Mycobacterium tuberculosis Beijing strain. Vaccine 33, 5633–5639, doi: 10.1016/j.vaccine.2015.08.084 (2015).
    Lasunskaia, E. et al. Emerging multidrug resistant Mycobacterium tuberculosis strains of the Beijing genotype circulating in Russia express a pattern of biological properties associated with enhanced virulence. Microbes and infection/Institut Pasteur 12, 467–475, doi: 10.1016/j.micinf.2010.02.008 (2010).
    Andrade, M. R. M. et al. Pathogenic Mycobacterium bovis strains differ in their ability to modulate the proinflammatory activation phenotype of macrophages. Bmc Microbiol 12, 166, doi: 10.1186/1471-2180-12-166 (2012).
    Hoft, D. F. et al. A new recombinant bacille Calmette-Guerin vaccine safely induces significantly enhanced tuberculosis-specific immunity in human volunteers. The Journal of infectious diseases 198, 1491–1501, doi: 10.1086/592450 (2008).
    Hess, J. et al. Mycobacterium bovis Bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes. Proceedings of the National Academy of Sciences of the United States of America 95, 5299–5304, doi: 10.1073/pnas.95.9.5299 (1998).
    Pym, A. S. et al. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9, 533–539, doi: 10.1038/nm859 (2003).
    Loxton, A. G. et al. Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clinical and vaccine immunology: CVI 24, doi: 10.1128/CVI.00439-16 (2017).
    Sander, P. et al. Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis. Vaccine 33, 1353–1359, doi: 10.1016/j.vaccine.2015.01.058 (2015).
    Berry, M. P., Blankley, S., Graham, C. M., Bloom, C. I. & O’Garra, A. Systems approaches to studying the immune response in tuberculosis. Current opinion in immunology 25, 579–587, doi: 10.1016/j.coi.2013.08.003 (2013).
    Kamath, A. T. et al. New live mycobacterial vaccines: the Geneva consensus on essential steps towards clinical development. Vaccine 23, 3753–3761, doi: 10.1016/j.vaccine.2005.03.001 (2005).
    Walker, K. B. et al. The second Geneva Consensus: Recommendations for novel live TB vaccines. Vaccine 28, 2259–2270, doi: 10.1016/j.vaccine.2009.12.083 (2010).
    Morais Fonseca, D. et al. Experimental tuberculosis: designing a better model to test vaccines against tuberculosis. Tuberculosis (Edinb) 90, 135–142, doi: 10.1016/j.tube.2010.01.005 (2010).