Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Cloud-based NoSQL open database of pulmonary nodules for computer-aided lung cancer diagnosis and reproducible research (2016)

  • Authors:
  • USP affiliated authors: MARQUES, PAULO MAZZONCINI DE AZEVEDO - FMRP
  • USP Schools: FMRP
  • DOI: 10.1007/s10278-016-9894-9
  • Subjects: COMPUTAÇÃO EM NUVEM; IMAGEM 3D; DIAGNÓSTICO POR COMPUTADOR; BANCO DE DADOS; NEOPLASIAS PULMONARES
  • Keywords: LUNG CANCER; PULMONARY NODULE; LUNG IMAGE DATABASE CONSORTIUM; IMAGE DATABASE RESOURCE INITIATIVE; COMPUTER-AIDED DIAGNOSIS; COMPUTER-AIDED DETECTION; 3D TEXTURE ANALYSIS; NOSQL; DOCUMENT-ORIENTED NONRELATIONAL DATABASE; MONGODB; CLOUD COMPUTING; DATABASE AS A SERVICE; REPRODUCIBLE RESEARCH
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10278-016-9894-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s10278-016-9894-9 (Fonte: Unpaywall API)

    Título do periódico: Journal of Digital Imaging

    ISSN: 0897-1889,1618-727X

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Link para o PDF
      • Evidência: oa repository (via OAI-PMH title and first author match)
      • Licença:
      • Versão: publishedVersion
      • Tipo de hospedagem: repository


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Journal of Digital Imaging

    ISSN: 0897-1889

    Citescore - 2017: 1.69

    SJR - 2017: 0.54

    SNIP - 2017: 1.031


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2847028pcd 2847028 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FERREIRA JUNIOR, José Raniery; OLIVEIRA, Marcelo Costa; AZEVEDO-MARQUES, Paulo Mazzoncini de. Cloud-based NoSQL open database of pulmonary nodules for computer-aided lung cancer diagnosis and reproducible research. Journal of Digital Imaging, New York, v. 29, n. 6, p. 716-729, 2016. Disponível em: < http://dx.doi.org/10.1007/s10278-016-9894-9 > DOI: 10.1007/s10278-016-9894-9.
    • APA

      Ferreira Junior, J. R., Oliveira, M. C., & Azevedo-Marques, P. M. de. (2016). Cloud-based NoSQL open database of pulmonary nodules for computer-aided lung cancer diagnosis and reproducible research. Journal of Digital Imaging, 29( 6), 716-729. doi:10.1007/s10278-016-9894-9
    • NLM

      Ferreira Junior JR, Oliveira MC, Azevedo-Marques PM de. Cloud-based NoSQL open database of pulmonary nodules for computer-aided lung cancer diagnosis and reproducible research [Internet]. Journal of Digital Imaging. 2016 ; 29( 6): 716-729.Available from: http://dx.doi.org/10.1007/s10278-016-9894-9
    • Vancouver

      Ferreira Junior JR, Oliveira MC, Azevedo-Marques PM de. Cloud-based NoSQL open database of pulmonary nodules for computer-aided lung cancer diagnosis and reproducible research [Internet]. Journal of Digital Imaging. 2016 ; 29( 6): 716-729.Available from: http://dx.doi.org/10.1007/s10278-016-9894-9

    Referências citadas na obra
    Wu H, Sun T, Wang J, Li X, Wang W, Huo D, Lv P, He W, Wang K, Guo X: Combination of Radiological and Gray Level Co-occurrence Matrix Textural Features Used to Distinguish Solitary Pulmonary Nodules by Computed Tomography. J Digit Imaging 26(4):797–802, 2013
    Reeves A, Chan A, Yankelevitz D, Henschke C, Kressler B, Kostis W: On Measuring the Change in Size of Pulmonary Nodules. IEEE Trans Med Imaging 25(4):435–450, 2006
    Oliveira M, Ferreira J: A Bag-of-Tasks Approach to Speed Up the Lung Nodules Retrieval in the BigData age. E-Health Networking, Application & Services, DOI: 10.1109/HealthCom.2013.6720753 , October 12, 2013.
    Doi K: Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential. Comput Med Imaging and Graph 31(4–5):198–211, 2007
    Akgul C, Rubin D, Napel S, Beaulieu C, Greenspan H, Acar B: Content-Based Image Retrieval in Radiology: Current Status and Future Directions. J Digit Imaging 24(2):208–222, 2011
    Jalalian A, Mashohor S, Mahmud H, Saripan M, Ramli A, Karasfi B: Computer-Aided Detection/Diagnosis of Breast Cancer in Mammography and Ultrasound: a review. Clin Imaging 37(3):420–426, 2013
    Deserno T, Welter P, Horsch A: Towards a Repository for Standardized Medical Image and Signal Case Data Annotated with Ground Truth. J Digit Imaging 25(2):213–226, 2012
    Tsymbal A, Meissner E, Kelm M, Kramer M: Towards Cloud-Based Image-Integrated Similarity Search in Big Data. Biomedical and Health Informatics, DOI: 10.1109/BHI.2014.6864434 , June 4, 2014.
    Armato S, McLennan G, Bidaut L, McNitt-Gray M, Meyer C, Reeves A, Zhao B, Aberle D, Henschke C, Hoffman E, et al: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans. Med Phys 38:915, 2011
    Aberle D, Berg C, Black W, Church T, Fagerstrom R, Galen B, Gareen I, Gatsonis C, Goldin J, Gohagan J, et al: The National Lung Screening Trial: overview and study design. Radiology 258(1):243–253, 2011
    Aerts H, Velazquez E, Leijenaar R, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, et al.: Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communications, 5, 2014.
    The Cancer Imaging Archive (TCIA). RIDER Collections. Available at http://wiki.cancerimagingarchive.net/display/Public/RIDER+Collections Accessed 23 February 2015.
    Gavrielides M, Kinnard L, Myers K, Peregoy J, Pritchard W, Zeng R, Esparza J, Karanian J, Petrick N: A Resource for the Assessment of Lung Nodule Size Estimation Methods: database of thoracic CT scans of an anthropomorphic phantom. Optics Express 18(14):15244–15255, 2010
    Das M, Ley-Zaporozhan J, Gietema H, Czech A, Muhlenbruch G, Mahnken A, Katoh M, Bakai A, Salganicoff M, Diederich S, et al: Accuracy of Automated Volumetry of Pulmonary Nodules Across Different Multislice CT Scanners. Eur Radiol 17(8):1979–1984, 2007
    The Cancer Imaging Archive (TCIA). Lung Phantom Image Collection. Available at http://wiki.cancerimagingarchive.net/display/Public/Lung+Phantom Accessed 23 February 2015.
    Armato S, Roberts R, McNitt-Gray M, Meyer C, Reeves A, McLennan G, Engelmann R, Bland P, Aberle D, Kazerooni E, et al: The Lung Image Database Consortium (LIDC): Ensuring the integrity of expert-defined “truth”. Acad Radiol 14(12):1455–1463, 2007
    Sluimer I, Schilham A, Prokop M, Ginneken B: Computer Analysis of Computed Tomography Scans of the Lung: a survey. IEEE Trans Med Imaging 25(4):385–405, 2006
    Lung Image Database Consortium and Image Database Resource Initiative. The Cancer Imaging Archive. Available at http://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI Accessed 02 February 2015.
    Montagnat J, Breton V, Magnin I: Using Grid Technologies to Face Medical Image Analysis Challenges. Biomedical Computations on the Grid, DOI: 10.1109/ccgrid.2003.1199418 , May, 2003.
    Vaquero L, Rodero-Merino L, Caceres J, Lindner M: A Break in the Clouds: Towards a Cloud Definition. ACM SIGCOMM Computer Communication Review 39(1):50–55, 2008
    Wei-ping Z, Ming-Xin L, Huan C: Using MongoDB to Implement Textbook Management System Instead of MySQL. Communication Software and Network, DOI: 10.1109/iccsn.2011.6013720 , May 29, 2011.
    Tiwari S: Professional NoSQL. John Wiley and Sons, Inc., 2011.
    Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers A: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute, pages 1–137, 2011.
    Banker K: MongoDB in Action. Manning Publications Co., 2011.
    Strauch C, Sites U, Kriha W: NoSQL Databases. Stuttgart Media University, 2011.
    Choi W, Choi T: Automated Pulmonary Nodule Detection Based on Three-Dimensional Shape-Based Feature Descriptor. Comput Methods Programs Biomed 113(1):37–54, 2014
    Erasmus J, Connolly J, McAdams H, Roggli V: Solitary Pulmonary Nodules: Part I. Morphologic Evaluation for Differentiation of Benign and Malignant Lesions 1. Radiographics, 20(1):43–58, 2000.
    Kumar A, Kim J, Cai W, Fulham M, Feng D: Content-Based Medical Image Retrieval: A Survey of Applications to Multidimensional and Multimodality Data. J Digit Imaging 26(6):1025–1039, 2013
    Lung Image Database Consortium and Image Database Resource Initiative. LIDC-IDRI Documentation: Anno-tated XML File. Available at http://wiki.cancerimagingarchive.net/download/attachments/3539039/annotated xml file Mar% 202010.rtf?version = 1&modificationDate = 1319224566198&api = v2 Accessed 02 February 2015.
    Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, et al: The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J Digit Imaging 26(6):1045–1057, 2013
    Leavitt N: Will NoSQL Databases Live Up to Their Promise? Computer 43(2):12–14, 2010
    Liu L: Computing Infrastructure for Big Data Processing. Frontiers of Computer Science 7(2):165–170, 2013
    MongoDB Inc. MongoDB Manual. Available at http://docs.mongodb.org/manual Accessed 02 February 2015.
    Hayes B: Cloud Computing. Communications of the ACM, 51(7), 2008.
    Rimal B, Choi E, Lumb I: A Taxonomy and Survey of Cloud Computing Systems. INC, IMS and IDC, DOI: 10.1109/NCM.2009.218 , August 27, 2009.
    Hacigumus H, Iyer B, Mehrotra S: Providing Database as a Service. Data Engineering, DOI: 10.1109/ICDE.2002.994695 , March 1, 2002.
    Oliveira M, Cirne W, Marques P: Towards Applying Content-Based Image Retrieval in the Clinical Routine. Future Generation Computer Systems 23(3):466–474, 2007
    Dhara A, Mukhopadhyay S, Dutta A, Garg M, Khandelwal N: A Combination of Shape and Texture Features for Classification of Pulmonary Nodules in Lung CT Images. J Digit Imaging, 1–10, 2016.
    Han F, Wang H, Zhang G, Han H, Song B, Li L, Moore W, Lu H, Zhao H, Liang Z: Texture feature analysis for computer-aided diagnosis on pulmonary nodules. J Digit Imaging 28(1):99–115, 2015
    Kaya A, Can A: A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics. J Biomed Inform 56:69–79, 2015
    Lam M, Disney T, Raicu D, Furst J, Channin D: BRISC - An Open Source Pulmonary Nodule Image Retrieval Framework. J Digit Imaging 20(1):63–71, 2007
    Ghoneim D, Toussaint G, Constans J, Certaines J: Three Dimensional Texture Analysis in MRI: A Preliminary Evaluation in Gliomas. Magn Reson Imaging 21(9):983–987, 2003
    Haralick R, Shanmugam K, Dinstein I: Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics, (6):610–621, 1973.
    Mehdi A, Vassili K, Eduard S, Vahid T: A Comprehensive Framework for Automatic Detection of Pulmonary Nodules in Lung CT Images. Image Analysis & Stereology 33(1):13–27, 2014