Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Innate And Adaptive Immunity are Progressively Activated in Parallel with Renal Injury in the 5/6 Renal Ablation Model (2017)

  • Authors:
  • USP affiliated authors: FANELLI, CAMILLA - FM ; MALHEIROS, DENISE MARIA AVANCINI COSTA - FM ; MOREIRA FILHO, CARLOS ALBERTO - FM ; CÂMARA, NIELS OLSEN SARAIVA - ICB ; FUJIHARA, CLARICE KAZUE - FM ; ZATZ, ROBERTO - FM
  • USP Schools: FM; FM; FM; ICB; FM; FM
  • DOI: 10.1038/s41598-017-02915-6
  • Subjects: SISTEMA IMUNE; IMUNIDADE ATIVA; RATOS WISTAR; EXPRESSÃO GÊNICA; INFLAMAÇÃO; RIM
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-017-02915-6 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-017-02915-6 (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FM2847177-10BCSEP 007/2017
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FANELLI, Camilla; ARIAS, Simone C. A.; MACHADO, Flavia G.; et al. Innate And Adaptive Immunity are Progressively Activated in Parallel with Renal Injury in the 5/6 Renal Ablation Model. Scientific reports, London, n. 07, 2017. Disponível em: < https://www.nature.com/articles/s41598-017-02915-6.pdf > DOI: 10.1038/s41598-017-02915-6.
    • APA

      Fanelli, C., Arias, S. C. A., Machado, F. G., Okuma, J. K., Malheiros, D. M. A. C., Azevedo, H., et al. (2017). Innate And Adaptive Immunity are Progressively Activated in Parallel with Renal Injury in the 5/6 Renal Ablation Model. Scientific reports, ( 07). doi:10.1038/s41598-017-02915-6
    • NLM

      Fanelli C, Arias SCA, Machado FG, Okuma JK, Malheiros DMAC, Azevedo H, Moreira-Filho CA, Camara NOS, Fujihara CK, Zatz R. Innate And Adaptive Immunity are Progressively Activated in Parallel with Renal Injury in the 5/6 Renal Ablation Model [Internet]. Scientific reports. 2017 ;( 07):Available from: https://www.nature.com/articles/s41598-017-02915-6.pdf
    • Vancouver

      Fanelli C, Arias SCA, Machado FG, Okuma JK, Malheiros DMAC, Azevedo H, Moreira-Filho CA, Camara NOS, Fujihara CK, Zatz R. Innate And Adaptive Immunity are Progressively Activated in Parallel with Renal Injury in the 5/6 Renal Ablation Model [Internet]. Scientific reports. 2017 ;( 07):Available from: https://www.nature.com/articles/s41598-017-02915-6.pdf

    Referências citadas na obra
    Floege, J. et al. Glomerular cells, extracellular matrix accumulation, and the development of glomerulosclerosis in the remnant kidney model. Lab Invest. 66(4), 485–497 (1992).
    Kurts, C. et al. The immune system and kidney disease: basic concepts and clinical implications. Nature Reviews Immunology. 13, 738–753 (2013).
    Noronha, I. L., Fujihara, C. K. & Zatz, R. The inflammatory component in progressive renal disease - are interventions possible? Nephrol. Dial. Transplant. 17, 363–368 (2002).
    Zeisberg, M. & Neilson, E. G. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol. 21, 1819–1834 (2010).
    Fujihara, C. K. et al. Cyclooxygenase-2 (COX-2) inhibition limits abnormal COX-2 expression and progressive injury in the remnant kidney. Kidney Int. 64(6), 2172–2181 (2003).
    Fujihara, C. K. et al. Nitroflurbiprofen, a new nonsteroidal anti-inflammatory, ameliorates structural injury in the remnant kidney. Am J Physiol. 274, F573–579 (1998).
    Fujihara, C. K. et al. Mycophenolate mofetil attenuates renal injury in the rat remnant kidney. Kidney Int. 54(5), 1510–1519 (1998).
    Fujihara, C. K. et al. Mycophenolate Mofetil Reduces Renal Injury in the Chronic Nitric Oxide Synthase Inhibition Model. Hypertension. 37(1), 170–175 (2001).
    Utimura, R. et al. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int. 63(1), 209–216 (2003).
    Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nature Reviews Cancer. 4, 11–22 (2004).
    Anders, H. J. & Sclondorff, D. Toll-like receptors: emerging concepts in kidney disease. Curr Opin Nephrol Hypertens. 16(3), 177–183 (2007).
    Anders, H. J. Toll-like receptors and danger signaling in kidney injury. J Am Soc Nephrol. 21(8), 1270–1274 (2010).
    Gonçalves, G. M. et al. New roles for innate immune response in acute and chronic kidney injuries. Scand. J Immunol. 73, 428–435 (2011).
    Schroppel, B. & He, J. C. Expression of Toll-like receptors in the kidney: their potential role beyond infection. Kidney Int. 69, 785–787 (2006).
    Smith, K. D. Toll-like receptors in kidney disease. Curr Opin Nephrol Hypertens. 18(3), 189–196 (2009).
    Chang, A., Ko, K. J. & Clark, M. R. The Emerging Role of the Inflammasome in Kidney Diseases. Curr Opin Nephrol Hypertens. 23(3), 204–210 (2014).
    Correa-Costa, M. et al. Pivotal role of Toll-like receptors 2 and 4, its adaptor molecule MyD88, and inflammasome complex in experimental tubule-interstitial nephritis. PLoS One. 6(12), e29004 (2011).
    Costa, J. C. et al. Enalapril reduces the expression of nuclear factor-kappaB and c-Jun N-terminal kinase in the renal cortices of five-sixths-nephrectomized rats. Am J Nephrol. 26(3), 281–6 (2006).
    D’Apolito, M. et al. Urea-induced ROS cause endothelial dysfunction in chronic renal failure. Atherosclerosis. 239(2), 393–400 (2015).
    Degaspari, S. et al. Altered KLOTHO and NF-κB-TNF-α Signaling Are Correlated with Nephrectomy-Induced Cognitive Impairment in Rats. PLoS One. 10(5), e0125271 (2015).
    Fujihara, C. K. et al. Chronic inhibition of nuclear factor-kappaB attenuates renal injury in the 5/6 renal ablation model. Am J Physiol Renal Physiol. 292(1), F92–99 (2007).
    Gong, W. et al. NLRP3 deletion protects against renal fibrosis and attenuates mitochondrial abnormality in mouse with 5/6 nephrectomy. Am J Physiol Renal Physiol. 310, F1081–1088 (2016).
    Hutton, H. L. et al. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology. 21, 736–744 (2016).
    Souza, A. C. P. et al. TLR4 mutant mice are protected from renal fibrosis and chronic kidney disease progression. Physiol Rep. 3(9) (2015).
    Vilaysane, A. et al. The NLRP3 Inflammasome Promotes Renal Inflammation and Contributes to CKD. J Am Soc Nephrol. 21, 1732–1744 (2010).
    Baroja-Mazo, A. et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature immunology. 15(8), 738–750 (2014).
    Okabe, C. et al. NF-κB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy. Am J Physiol Renal Physiol. 15;305(2), F155–163 (2012).
    Romero, F. et al. Mycophenolate mofetil prevents the progressive renal failure induced by 5/6 renal ablation in rats. Kidney Int. 55(3), 945–55 (1999).
    Fujihara, C. K. et al. Combined mycophenolate mofetil and losartan therapy arrests established injury in the remnant kidney. J Am Soc Nephrol. 11(2), 283–290 (2000).
    Fujihara, C. K. et al. Early brief treatment with losartan plus mycophenolate mofetil provides lasting renoprotection in a renal ablation model. Am J Nephrol. 32(2), 95–102 (2010).
    Arias, S. C. et al. Regression of albuminuria and hypertension and arrest of severe renal injury by a losartan-hydrochlorothiazide association in a model of very advanced nephropathy. PLoS One. 8(2), e56215 (2013).
    Machado, F. G. et al. Chronic VEGF blockade worsens glomerular injury in the remnant kidney model. PLoS One. 7(6), e39580 (2012).
    Jaguin, M. et al. Polarization profiles of human M-CSF-generated macrophages and comparison of M1-markers in classically activated macrophages from GM-CSF and M-CSF origin. Cellular Immunology. 281, 51–56 (2013).
    Murray, P. J. et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity. 41(17) (2014).
    Tian, S. & Chen, S. Y. Macrophage polarization in kidney diseases. Macrophage (Houst) 2(1), e679 (2015).
    Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature. 383, 787–793 (1996).
    Ekkens, M. J. et al. Th1 and Th2 Cells Help CD8 T-Cell Responses. Infection and Immunity. 75(5), 2291–2296 (2007).
    Lebre, M. C. et al. Differential expression of inflammatory chemokines by Th1- and Th2-cell promoting dendritic cells: A role for different mature dendritic cell populations in attracting appropriate effector cells to peripheral sites of inflammation. Immunology and Cell Biology. 83, 525–535 (2005).
    Lehners, A. et al. Myeloperoxidase deficiency ameliorates progression of chronic kidney disease in mice. Am J Physiol Renal Physiol. 307, F407–F417 (2014).
    Akira, S. & Takeda, K. Toll-like receptor signaling. Nature Rev. Immunology. 4(7), 499–511 (2004).
    Anders, H. J. & Muruve, D. A. The inflammasomes in kidney disease. J Am Soc Nephrol. 22(6), 1007–1018 (2011).
    Finberg, R. W. et al. Cell activation by Toll-like receptors: role of LBP and CD14. Journal of Endotoxin Research. 10(6), 413–418 (2004).
    Lu, Y. C., Yeh, W. C. & Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine. 42, 145–151 (2008).
    Leemans, J. C. et al. Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol. 10(7), 398–414 (2014).
    Machida, H. et al. Expression of Toll-like receptor 9 in renal podocytes in childhood-onset active and inactive lupus nephritis. Nephrol Dial Transplant 25, 2530–2537 (2010).
    Lu, K. C. et al. The T-1237C polymorphism of the Toll-like receptor 9 gene is associated with chronic kidney disease in a Han Chinese population. Tohoku J Exp Med 225(2), 109–116 (2011).
    Hsin-Yi, Y. et al. Role of the Functional Toll-Like Receptor 9 Promoter Polymorphism (-1237T/C) in Increased Risk of End-Stage Renal Disease: A Case-Control Study. PLoS One. 8(3), e58444 (2013).
    Satirapoj, B. et al. Oxidized Low-Density Lipoprotein Antigen Transport Induces Autoimmunity in the Renal Tubulointerstitium. Am J Nephrol. 35, 520–530 (2012).
    Kawai, T. & Akira, S. Signaling to NF-κB by Toll-like receptors. Trends in. Molecular Medicine. 13(11), 460–469 (2007).
    Donadelli, R. et al. Protein Traffic Activates NF-kB Gene Signaling and Promotes MCP-1–Dependent Interstitial Inflammation. Am J Kidney Dis. 36(6), 1226–1241 (2000).
    Lorenz, G., Darisipudi, M. N. & Anders, H. J. Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis. Nephrol Dial Transplant. 29(1), 41–48 (2014).
    Coll, R. C. & O’Neill, L. A. J. The Cytokine Release Inhibitory Drug CRID3 Targets ASC Oligomerisation in the NLRP3 and AIM2 Inflammasomes. PLoS ONE. 6(12), e29539 (2011).
    Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nature Medicine. 21(3) (2015).
    Krishnan, S. M. et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. The British Pharmacological Society. 173(4), 752–765 (2016).
    Du, P. et al. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy. Kidney Int. 84(2), 265–76 (2013).
    Boyle, J. P., Parkhouse, R. & Monie, T. P. Insights into the molecular basis of the NOD2 signalling pathway. Open Biol. 4(12), 140178 (2014).
    KEGG (Kyoto Encyclopedia of Genes and Genomes) Pathway Database http://www.genome.jp/kegg/pathway.html . Accessed on October 7 (2016).
    Cheng, H. F. et al. Cyclooxygenase-2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension. Kidney Int. 62(3), 929–939 (2002).
    Fujihara, C. K. et al. An extremely high dose of losartan affords superior renoprotection in the remnant model. Kidney Int. 67(5), 1913–24 (2005).
    Enrichr, Gene enrichment analysis online tool, http://amp.pharm.mssm.edu/Enrichr/ . Accessed on October 7 (2016).
    Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 15(14), 128 (2013).
    Kuleshov, M. V. et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research. 8(44 W1), W90–W97 (2016).
    Martino, M. M. et al. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration. Nature Communications. 7, 11051 (2016).
    Fanelli, C. et al. Effects of losartan, in monotherapy or in association with hydrochlorothiazide, in chronic nephropathy resulting from losartan treatment during lactation. Am J Physiol Renal Physiol. 301(3), F580–F587 (2011).
    Jepsen, F. L. & Mortensen, P. B. Interstitial fibrosis of the renal cortex in minimal change lesion and its correlation with renal function. A quantitative study. Virchows Arch A Pathol Anat Histol. 383(3), 265–270 (1979).
    Últimas obras dos mesmos autores vinculados com a USP cadastradas na BDPI: