Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer‑induced cachexia progression in Walker‑256 tumor‑bearing rats (2016)

  • Authors:
  • USP affiliated authors: SILVA, LILIAN ESLAINE COSTA MENDES DA - FMRP ; JORDAO JUNIOR, ALCEU AFONSO - FMRP
  • USP Schools: FMRP; FMRP
  • DOI: 10.1007/s00726-016-2172-9
  • Subjects: NEOPLASIAS; HOMOCISTEÍNA; ESTRESSE OXIDATIVO
  • Keywords: Homocysteine; Oxidative stress; Cancer; Creatine; Rats
  • Language: Inglês
  • Imprenta:
    • Publisher place: Wien
    • Date published: 2016
  • Source:
    • Título do periódico: Amino Acids
    • ISSN: 0939-4451
    • Volume/Número/Paginação/Ano: v. 48, p. 2015-2024, 2016
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00726-016-2172-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    Versões disponíveis em Acesso Aberto do: 10.1007/s00726-016-2172-9 (Fonte: Unpaywall API)

    Título do periódico: Amino Acids

    ISSN: 0939-4451,1438-2199



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Amino Acids

    ISSN: 0939-4451

    Citescore - 2017: 2.94

    SJR - 2017: 1.135

    SNIP - 2017: 0.989


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2850073pcd 2850073 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DEMINICE, Rafael; CELLA, Paola Sanches; PADILHA, Camila S.; et al. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer‑induced cachexia progression in Walker‑256 tumor‑bearing rats. Amino Acids, Wien, v. 48, p. 2015-2024, 2016. Disponível em: < http://dx.doi.org/10.1007/s00726-016-2172-9 > DOI: 10.1007/s00726-016-2172-9.
    • APA

      Deminice, R., Cella, P. S., Padilha, C. S., Borges, F. H., Silva, L. E. C. M. da, Campos‑Ferraz, P. L., et al. (2016). Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer‑induced cachexia progression in Walker‑256 tumor‑bearing rats. Amino Acids, 48, 2015-2024. doi:10.1007/s00726-016-2172-9
    • NLM

      Deminice R, Cella PS, Padilha CS, Borges FH, Silva LECM da, Campos‑Ferraz PL, Jordão Júnior AA, Robinson JL, Bertolo RF, Cecchini R, Guarnier FA. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer‑induced cachexia progression in Walker‑256 tumor‑bearing rats [Internet]. Amino Acids. 2016 ; 48 2015-2024.Available from: http://dx.doi.org/10.1007/s00726-016-2172-9
    • Vancouver

      Deminice R, Cella PS, Padilha CS, Borges FH, Silva LECM da, Campos‑Ferraz PL, Jordão Júnior AA, Robinson JL, Bertolo RF, Cecchini R, Guarnier FA. Creatine supplementation prevents hyperhomocysteinemia, oxidative stress and cancer‑induced cachexia progression in Walker‑256 tumor‑bearing rats [Internet]. Amino Acids. 2016 ; 48 2015-2024.Available from: http://dx.doi.org/10.1007/s00726-016-2172-9

    Referências citadas na obra
    Akoglu B, Milovic V, Caspary WF, Faust D (2004) Hyperproliferation of homocysteine-treated colon cancer cells is reversed by folate and 5-methyltetrahydrofolate. Eur J Nutr 43:93–99. doi: 10.1007/s00394-004-0446-6
    Chiang FF, Wang HM, Lan YC, Yang MH, Huang SC, Huang YC (2014) High homocysteine is associated with increased risk of colorectal cancer independently of oxidative stress and antioxidant capacities. Clin Nutr 33:1054–1060. doi: 10.1016/j.clnu.2013.11.007
    Collinsova M, Strakova J, Jiracek J, Garrow TA (2006) Inhibition of betaine-homocysteine S-methyltransferase in mice causes hyperhomocysteinemia. J Nutr 136:1493–1497
    de Campos-Ferraz PL, Andrade I, das Neves W, Hangai I, Alves CR, Lancha AH Jr (2014) An overview of amines as nutritional supplements to counteract cancer cachexia. J Cachexia Sarcopenia Muscle 5:105–110. doi: 10.1007/s13539-014-0138-x
    DebRoy S, Kramarenko II, Ghose S, Oleinik NV, Krupenko SA, Krupenko NI (2013) A novel tumor suppressor function of glycine N-methyltransferase is independent of its catalytic activity but requires nuclear localization. PLoS One 30(8):e70062. doi: 10.1371/journal.pone.0070062
    Deminice R, Portari GV, Vannucchi H, Jordao AA (2009) Effects of creatine supplementation on homocysteine levels and lipid peroxidation in rats. Br J Nutr 102:110–116. doi: 10.1017/S0007114508162985
    Deminice R, Vannucchi H, Simo˜es-Ambrosio LM, Jordao AA (2011a) Creatine supplementation reduces increased homocysteine concentration induced by acute exercise in rats. Eur J Appl Physiol 111:2663–2670. doi: 10.1007/s00421-011-1891-6
    Deminice R, da Silva RP, Lamarre SG, Brown C, Furey GN, McCarter SA, Jordao AA, Kelly KB, King-Jones K, Jacobs RL, Brosnan ME (2011b) Creatine supplementation prevents the accumulation of fat in the livers of rats fed a high-fat diet. J Nutr 141:1799–1804. doi: 10.3945/jn.111.144857
    Deminice R, Castro GSF, Francisco LV, Silva LECM, Cardoso JFR, Frajacomo FT, Teodoro BG, Silveira LR, Jordao AA (2015) Creatine supplementation prevents fatty liver in rats fed choline-deficient diet: a burden of one-carbon and fatty acid metabolism. J Nutr Biochem 26:391–397. doi: 10.1016/j.jnutbio.2014.11.014
    Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Physiol Renal Physiol 293:F1799–F1804
    Gonzalez-Flecha B, Llesuy S, Boveris A (1991) Hydroperoxide initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver and muscle. Free Rad Biol Med 10:93–100
    Gualano B, Roschel H, Lancha-Jr AH, Brightbill CE, Rawson ES (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43:519–529. doi: 10.1007/s00726-011-1132-7
    Guarnier FA, Cecchini AL, Suzukawa AA, Maragno AL, Simão AN, Gomes MD, Cecchini R (2010) Time course of skeletal muscle loss and oxidative stress in rats with Walker 256 solid tumor. Muscle Nerve 42:950–958. doi: 10.1002/mus.21798
    Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clinical science 83(3):367–374
    Hultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PL (1996) Muscle creatine loading in men. J Appl Physiol (1985) 81(1):232–237
    Koyama S, Hata S, Witt CC, Ono Y, Lerche S, Ojima K, Chiba T, Doi N, Kitamura F, Tanaka K, Abe K, Witt SH, Rybin V, Gasch A, Franz T, Labeit S, Sorimachi H (2008) Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. J Mol Biol 376:1224–1236. doi: 10.1016/j.jmb.2007.11.049
    Lawler JM, Barnes WS, Wu G, Song W, Demaree S (2002) Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290:47–52
    Marklund SA, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur J Biochem 47:469–474
    Martínez-Chantar ML, Vázquez-Chantada M, Ariz U, Martínez N, Varela M, Luka Z, Capdevila A, Rodríguez J, Aransay AM, Matthiesen R, Yang H, Calvisi DF, Esteller M, Fraga M, Lu SC, Wagner C, Mato JM (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191–1199. doi: 10.1002/hep.22159
    Miller JW, Beresford SA, Neuhouser ML, Cheng TY, Song X, Brown EC, Zheng Y, Rodriguez B, Green R, Ulrich CM (2013) Homocysteine, cysteine, and risk of incident colorectal cancer in the Women’s Health Initiative observational cohort. Am J Clin Nutr 97:827–834. doi: 10.3945/ajcn.112.049932
    Patra S, Bera S, SinhaRoy S, Ghoshal S, Ray S, Basu A, Schlattner U, Wallimann T, Ray M (2008) Progressive decrease of phosphocreatine, creatine and creatine kinase in skeletal muscle upon transformation to sarcoma. FEBS J 275:3236–3247. doi: 10.1111/j.1742-4658.2008.06475.x
    Patra S, Ghosh A, Roy SS, Bera S, Das M, Talukdar D, Ray S, Wallimann T, Ray M (2012) A short review on creatine-creatine kinase system in relation to cancer and some experimental results on creatine as adjuvant in cancer therapy. Amino Acids 42:2319–2330. doi: 10.1007/s00726-011-0974-3
    Pryzimirska TV, Pogribny IP, Chekhun VF (2007) The impact of tumor growth on plasma homocysteine levels and tissue-specific DNA methylation in Walker-256 tumor-bearing rats. Exp Oncol 29:262–266
    Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1:3159–3165
    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616. doi: 10.1016/j.freeradbiomed.2010.09.006
    Sakkas GK, Schambelan M, Mulligan K (2009) Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting? Curr Opin Clin Nutr Metab Care 12:623–627. doi: 10.1097/MCO.0b013e328331de63
    Sestili P, Martinelli C, Colombo E, Barbieri E, Potenza L, Sartini S, Fimognari C (2011) Creatine as an antioxidant. Amino Acids 40:1385–1396. doi: 10.1007/s00726-011-0875-5
    Spirlandeli AL, Deminice R, Jordao AA (2014) Plasma malondialdehyde as biomarker of lipid peroxidation: effects of acute exercise. Int J Sports Med 35:14–18. doi: 10.1055/s-0033-1345132
    Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83:5–10
    Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577
    Sun CF, Haven TR, Wu TL, Tsao KC, Wu JT (2002) Serum total homocysteine increases with the rapid proliferation rate of tumor cells and decline upon cell death: a potential new tumor marker. Clin Chim Acta 321:55–62
    Teng Y-W, Mehedint MG, Garrow TA, Zeisel SH (2011) Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem 286:36258–36267. doi: 10.1074/jbc.M111.265348
    Van Pilsum JF, Taylor D, Zakis B, McCormick P (1970) Simplified assay for transamidinase activities of rat kidney homogenates. Anal Biochem 35:277–286
    Varela-Rey M, Martínez-López N, Fernández-Ramos D, Embade N, Calvisi DF, Woodhoo A, Rodríguez J, Fraga MF, Julve J, Rodríguez-Millán E, Frades I, Torres L, Luka Z, Wagner C, Esteller M, Lu SC, Martínez-Chantar ML, Mato JM (2010) Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide. Hepatology 52:105–114. doi: 10.1002/hep.23639
    Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296. doi: 10.1007/s00726-011-0877-3
    Weiss N (2005) Mechanisms of increased vascular oxidant stress in hyperhomocysteinemia and its impact on endothelial function. Curr Drug Metab 6:27–36
    Williams A, Sun X, Fischer JE, Hasselgren PO (1999) The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 126:744–749
    Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B (1996) Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 49:1304–1313
    Wu LL, Wu JT (2002) Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta 322:21–28
    Yamashita EK, Teixeira BM, Yoshihara RN, Kuniyoshi RK, Alves BC, Gehrke FS, Vilas-Bôas VA, Correia JA, Azzalis LA, Junqueira VB, Pereira EC, Fonseca FL (2014) Systemic chemotherapy interferes in homocysteine metabolism in breast cancer patients. J Clin Lab Anal 28:157–162. doi: 10.1002/jcla.21660