Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X (2017)

  • Authors:
  • USP affiliated authors: GONCALVES, DACIBERG LIMA - IME
  • USP Schools: IME
  • DOI: 10.1007/s40590-016-0150-6
  • Subjects: TOPOLOGIA ALGÉBRICA; GRUPOS DE LIE
  • Keywords: Configuration space; Free action of a group; Homotopy fibre; Homotopy pullback; Manifold; Sphere; Orbit space; Whisker map
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s40590-016-0150-6 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s40590-016-0150-6 (Fonte: Unpaywall API)

    Título do periódico: Boletín de la Sociedad Matemática Mexicana

    ISSN: 1405-213X,2296-4495



      Não possui versão em Acesso aberto

    Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    IME2851426-10PROD-2851426
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MAREK GOLASIŃSKI,; GONÇALVES, Daciberg Lima; JOHN GUASCHI,. On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X. Boletín de la Sociedad Matemática Mexicana, Basel, v. 23, n. 1, p. 457-485, 2017. Disponível em: < https://doi.org/10.1007/s40590-016-0150-6 > DOI: 10.1007/s40590-016-0150-6.
    • APA

      Marek Golasiński,, Gonçalves, D. L., & John Guaschi,. (2017). On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X. Boletín de la Sociedad Matemática Mexicana, 23( 1), 457-485. doi:10.1007/s40590-016-0150-6
    • NLM

      Marek Golasiński, Gonçalves DL, John Guaschi. On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X [Internet]. Boletín de la Sociedad Matemática Mexicana. 2017 ; 23( 1): 457-485.Available from: https://doi.org/10.1007/s40590-016-0150-6
    • Vancouver

      Marek Golasiński, Gonçalves DL, John Guaschi. On the homotopy fibre of the inclusion map Fn(X)↪∏n1X for some orbit spaces X [Internet]. Boletín de la Sociedad Matemática Mexicana. 2017 ; 23( 1): 457-485.Available from: https://doi.org/10.1007/s40590-016-0150-6

    Referências citadas na obra
    Allaud, G.: Delooping homotopy equivalences. Arch. Math. Basel 23, 167–169 (1972)
    Arkowitz, M.: Introduction to Homotopy Theory. Universitext, Springer, New York (2011)
    Birman, J.S.: On braid groups. Commun. Pure Appl. Math. 22, 41–72 (1969)
    Birman, J.S.: Braids, links and mapping class groups. Ann. Math. Stud. 82, Princeton University Press (1974)
    Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York (1972)
    Cohen, F.R.: Introduction to configuration spaces and their applications. In: Braids, volume 19, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., World Sci. Publ., Hackensack, NJ pp. 183–261 (2010)
    Cohen, F.R., Xicoténcatl, M.A.: On orbit configuration spaces associated to the Gaussian integers: homotopy and homology groups. In: Arrangements in Boston: A Conference on Hyperplane Arrangements (1999), Topol. Appl. vol. 118, 17–29 (2002)
    Edmonds, A.L.: Taming free circle actions. Proc. Am. Math. Soc. 62, 337–343 (1977)
    Fadell, E., Husseini, S.Y.: Fixed point theory for non-simply-connected manifolds. Topology 20, 53–92 (1981)
    Fadell, E., Husseini, S.Y.: Geometry and Topology of Configuration Spaces. Springer Monographs in Mathematics. Springer, Berlin (2001)
    Fadell, E., Neuwirth, L.: Configuration spaces. Math. Scand. 10, 111–118 (1962)
    Floyd, E.E.: On periodic maps and the Euler characteristics of associated spaces. Trans. Am. Math. Soc. 72, 138–147 (1952)
    Goldberg, C.H.: An exact sequence of braid groups. Math. Scand. 33, 69–82 (1973)
    Gonçalves, D.L., Guaschi, J.: Inclusion of configuration spaces in Cartesian products, and the virtual cohomological dimension of the braid groups of $${\mathbb{S}}^{2}$$ S 2 and $${\mathbb{R}}P^{2}$$ R P 2 . Pacific J. Math. to appear
    Gonçalves, D.L., Guaschi, J.: The homotopy fibre of the inclusion $${F}_{n}(M) {\hookrightarrow } \prod _{1}^{n} M$$ F n ( M ) ↪ ∏ 1 n M for $$M$$ M either $${\mathbb{S}}^{2}$$ S 2 or $${\mathbb{R}}P^{2}$$ R P 2 and orbit configuration spaces. In preparation
    Hilton, P.: Homotopy Theory and Duality. Gordon and Breach Science Publishers, New York (1965)
    Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218, 2nd edn. Springer, New York (2013)
    Massey, W.S.: Algebraic Topology: An Introduction, reprint of the 1967 edition. Graduate Texts in Mathematics 56. Springer, New York (1977)
    Mather, M.: Pull-backs in homotopy theory. Can. J. Math. XXVIII(2), 225–263 (1976)
    Westerland, C.: Configuration spaces in topology and geometry. Aust. Math. Soc. Gaz. 38, 279–283 (2011)
    Zabrodsky, A.: Covering spaces of paracompact spaces. Pacific J. Math. 14, 1489–1503 (1964)