Ver registro no DEDALUS
Exportar registro bibliográfico



Symmetries and boundary conditions with a twist (2017)

  • Authors:
  • USP affiliated authors: OLIVEIRA, LUIZ NUNES DE - IFSC
  • USP Schools: IFSC
  • DOI: 10.1007/s13538-017-0517-9
  • Keywords: Boundary conditions; Hubbard model; Finite-size scaling
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s13538-017-0517-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s13538-017-0517-9 (Fonte: Unpaywall API)

    Título do periódico: Brazilian Journal of Physics

    ISSN: 0103-9733,1678-4448

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Link para o PDF
      • Evidência: oa repository (via OAI-PMH title and first author match)
      • Licença:
      • Versão: submittedVersion
      • Tipo de hospedagem: repository

    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository

    Informações sobre o Citescore
  • Título: Brazilian Journal of Physics

    ISSN: 0103-9733

    Citescore - 2017: 0.95

    SJR - 2017: 0.276

    SNIP - 2017: 0.6

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ZAWADZKI, Krissia; D'AMICO, I.; OLIVEIRA, Luiz Nunes de. Symmetries and boundary conditions with a twist. Brazilian Journal of Physics, New York, Springer, v. 47, n. 5, p. 488-511, 2017. Disponível em: < > DOI: 10.1007/s13538-017-0517-9.
    • APA

      Zawadzki, K., D'Amico, I., & Oliveira, L. N. de. (2017). Symmetries and boundary conditions with a twist. Brazilian Journal of Physics, 47( 5), 488-511. doi:10.1007/s13538-017-0517-9
    • NLM

      Zawadzki K, D'Amico I, Oliveira LN de. Symmetries and boundary conditions with a twist [Internet]. Brazilian Journal of Physics. 2017 ; 47( 5): 488-511.Available from:
    • Vancouver

      Zawadzki K, D'Amico I, Oliveira LN de. Symmetries and boundary conditions with a twist [Internet]. Brazilian Journal of Physics. 2017 ; 47( 5): 488-511.Available from:

    Referências citadas na obra
    L.W. Cheuk, M.A. Nichols, K.R. Lawrence, M. Okan, H. Zhang, E. Khatami, N. Trivedi, T. Paiva, M. Rigol, M.W. Zwierlein, Observation of spatial charge and spin correlations in the 2d Fermi-Hubbard model. Science. 353, 1260–1264 (2016).
    M. Boll, T.A. Hilker, G. Salomon, A. Omran, J. Nespolo, L. Pollet, I. Bloch, C. Gross, Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains. Science. 353, 1257–1260 (2016).
    M.F. Parsons, A. Mazurenko, C.S. Chiu, G. Ji, D. Greif, M. Greiner, Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model. Science. 353, 1253–1256 (2016).
    S. Murmann, A. Bergschneider, V.M. Klinkhamer, G. Zürn, T. Lompe, S. Jochim, Two fermions in a double well: exploring a fundamental building block of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015)
    A. Ghirri, A. Candini, M. Evangelisti, M. Affronte, S. Carretta, P. Santini, G. Amoretti, R.S.G. Davies, G. Timco, R.E.P. Winpenny, Elementary excitations in antiferromagnetic Heisenberg spin segments. Phys. Rev. B. 76, 214405 (2007)
    A. Candini, G. Lorusso, F. Troiani, A. Ghirri, S. Carretta, P. Santini, G. Amoretti, C. Muryn, F. Tuna, G. Timco, E.J.L. McInnes, R.E.P. Winpenny, W. Wernsdorfer, M. Affronte, Entanglement in supramolecular spin systems of two weakly coupled antiferromagnetic rings (purple- C r 7Ni). Phys. Rev. Lett. 104, 037203 (2010)
    T. H. Johnson, Y. Yuan, W. Bao, S.R. Clark, C. Foot, D. Jaksch, Hubbard model for atomic impurities bound by the vortex lattice of a rotating bose-einstein condensate. Phys. Rev. Lett. 116, 240402 (2016)
    A. Gallemí, G. Queraltó, M. Guilleumas, R. Mayol, A. Sanpera, Quantum spin models with mesoscopic bose-einstein condensates. Phys. Rev. A. 94, 063626 (2016)
    J. Salfi, J.A. Mol, R. Rahman, G. Klimeck, M.Y. Simmons, L.C.L. Hollenberg, S. Rogge, Quantum simulation of the Hubbard model with dopant atoms in silicon. Nat. Commun. 7, 11342 (2016)
    J. Ferrando-Soria, E. Moreno Pineda, A. Chiesa, A. Fernandez, S.A. Magee, S. Carretta, P. Santini, I.J. Vitorica-Yrezabal, F. Tuna, G.A. Timco, E.J.L. McInnes, R.E.P. Winpenny, A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 EP (2016)
    Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)
    W. Kohn, Theory of the insulating state. Phys. Rev. 133, A171–A181 (1964)
    D.J. Thouless, Long-range order in the antiferromagnetic ground state. Proc. Phys. Soc. (London). 90, 243 (1967)
    B.S. Shastry, B. Sutherland, Twisted boundary conditions and effective mass in Heisenberg-Ising and Hubbard chains. Phys. Rev. Lett. 65, 243–246 (1990)
    B. Sutherland, B.S. Shastry, Adiabatic transport properties of an exactly soluble one-dimensional quantum many-body problem. Phys. Rev. Lett. 65, 1833–1837 (1990)
    M.J. Martins, R.M. Fye, Bethe Ansatz results for Hubbard chains with Toroidal boundary conditions. J. Stat. Phys. 64, 271–276 (1991)
    M. Shiroishi, M. Wadati, Integrable boundary conditions for the one-dimensional Hubbard model. J. Phys. Soc. Jpn. 66, 2288–2301 (1997)
    H.O. Frota, L.N. Oliveira, Photoemission spectroscopy for the spin-degenerate Anderson model. Phys. Rev. B. 33, 7871–7874 (1986)
    M. Yoshida, M.A. Whitaker, L.N. Oliveira, Renormalization-group calculation of excitation properties for impurity models. Phys. Rev. B. 41, 9403–9414 (1990)
    J. Tinka Gammel, D.K. Campbell, E.Y. Loh, Extracting infinite system properties from finite size clusters: phase randomization/boundary condition averaging. Synth. Met. 57, 4437–4442 (1993)
    C. Gros, Control of the finite-size corrections in exact diagonalization studies. Phys. Rev. B. 53, 6865–6868 (1996)
    C. Lin, F.H. Zong, D.M. Ceperley, Twist-averaged boundary conditions in continuum quantum monte carlo algorithms. Phys. Rev. E. 64, 016702 (2001)
    S. Chiesa, P.B. Chakraborty, W.E. Pickett, R.T. Scalettar, Disorder-induced stabilization of the pseudogap in strongly correlated systems. Phys. Rev. Lett. 101, 086401 (2008)
    T. Mendes-Santos, T. Paiva, R.R. dos Santos, Size and shape of Mott regions for fermionic atoms in a two-dimensional optical lattice. Phys. Rev. A. 91, 023632 (2015)
    B. Schuetrumpf, W. Nazarewicz, P.G. Reinhard, Time-dependent density functional theory with twist-averaged boundary conditions. Phys. Rev. C, 93. doi: 10.1103/PhysRevC.93.054304 (2016)
    G.M. de Divitiis, R. Petronzio, N. Tantalo, On the discretization of physical momenta in lattice QCD. Phys. Lett. B. 595, 408–413 (2004)
    C.T. Sachrajda, G. Villadoro, Twisted boundary conditions in lattice simulations. Phys. Lett. B. 609, 73–85 (2005)
    P.F. Bedaque, J.-W. Chen, Twisted valence quarks and hadron interactions on the lattice. Phys. Lett. B. 616, 208–214 (2005)
    J.M. Flynn, A. Jüttner, C.T. Sachrajda, A numerical study of partially twisted boundary conditions. Phys. Lett. B. 632, 313–318 (2006)
    F.-J. Jiang, B.C. Tiburzi, Flavor twisted boundary conditions, pion momentum, and the pion electromagnetic form factor. Phys. Lett. B. 645, 314–321 (2007)
    D. Agadjanov, F.K. Guo, G. Rios, A. Rusetsky, Bound states on the lattice with partially twisted boundary conditions. J. High Energy Phys. doi: 10.1007/JHEP01(2015)118 (2015)
    M. Nitta, Fractional instantons and bions in the principal chiral model on r − 2s − 1 with twisted boundary conditions. J. High Energy Phys. doi: 10.1007/JHEP08(2015)063 (2015)
    G. Colangelo, A. Vaghi, Pseudoscalar mesons in a finite cubic volume with twisted boundary conditions, J. High Energy Phys. doi: 10.1007/JHEP07(2016)134 (2016)
    F.H.L. Essler, H. Frahm, A. Klümper, V.E. Korepin. The One-Dimensional Hubbard Model (Cambridge University Press, Cambridge, 2005). Available online at
    N.W. Ashcroft, N.D. Mermin. Solid State Physics (Holt-Saunders International Editions, Philadelphia, 1976)
    W. Kohn, P. Vashista, General density functional theory. In Theory of the Inhomogeneous Electron Gas, ed. by S. Lundqvist, N.H. March (Springer Science + Business Media, LLC, Berlin, 1983), p. 79
    D.J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, USA, 1994)
    E.H. Lieb, F.Y. Wu, Absence of Mott-transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20, 1445–1448 (1968)
    E. Lieb, F.Y. Wu, The one-dimensional Hubbard model: a reminiscence. Physica A. 321, 1–27 (2003)
    Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled s band. Phys. Rev. 147, 392–405 (1966)
    Y. Nagaoka, Ground state of correlated electrons in a narrow almost half-filled s band. Solid State Commun. 3, 409–412 (1965)
    H. Tasaki, Extension of Nagaoka’s theorem on the large-U Hubbard model. Phys. Rev. B. 40, 9192–9193 (1989)
    A.G. Izergin, A.G. Pronko, N.I. Abarenkova, Temperature correlators in the two-component one-dimensional Hubbard model in the strong coupling limit. Phys. Lett. A. 245, 537 (1998)