Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers (2016)

  • Authors:
  • USP affiliated authors: MARTINEZ, ROBERTO - FMRP ; GUIRRO, RINALDO ROBERTO DE JESUS - FMRP
  • USP Schools: FMRP; FMRP
  • DOI: 10.1007/s10103-016-1907-x
  • Subjects: ESCHERICHIA COLI; PSEUDOMONAS; ÚLCERA CUTÂNEA; STAPHYLOCOCCUS
  • Keywords: Lowel-level laser therapy; Skin ulcers; Staphylococcus aureus; Escherichia coli; Pseudomonas aeruginosa
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10103-016-1907-x (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10103-016-1907-x (Fonte: Unpaywall API)

    Título do periódico: Lasers in Medical Science

    ISSN: 0268-8921,1435-604X



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Lasers in Medical Science

    ISSN: 0268-8921

    Citescore - 2017: 2.14

    SJR - 2017: 0.713

    SNIP - 2017: 1.067


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2851928pcd 2851928 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SOUSA, Natanael Teixeira Alves de; GOMES, Rosana Caetano; SANTOS, Marcos Ferracioli; et al. Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers. Lasers in Medical Science, London, v. 31, n. 3, p. 549-556, 2016. Disponível em: < http://dx.doi.org/10.1007/s10103-016-1907-x > DOI: 10.1007/s10103-016-1907-x.
    • APA

      Sousa, N. T. A. de, Gomes, R. C., Santos, M. F., Brandino, H. E., Martinez, R., & Guirro, R. R. de J. (2016). Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers. Lasers in Medical Science, 31( 3), 549-556. doi:10.1007/s10103-016-1907-x
    • NLM

      Sousa NTA de, Gomes RC, Santos MF, Brandino HE, Martinez R, Guirro RR de J. Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers [Internet]. Lasers in Medical Science. 2016 ; 31( 3): 549-556.Available from: http://dx.doi.org/10.1007/s10103-016-1907-x
    • Vancouver

      Sousa NTA de, Gomes RC, Santos MF, Brandino HE, Martinez R, Guirro RR de J. Red and infrared laser therapy inhibits in vitro growth of major bacterial species that commonly colonize skin ulcers [Internet]. Lasers in Medical Science. 2016 ; 31( 3): 549-556.Available from: http://dx.doi.org/10.1007/s10103-016-1907-x

    Referências citadas na obra
    Korber A, Schmid EN, Buer J, Klode J, Schadendorf D, Dissemond J (2010) Bacterial colonization of chronic leg ulcers: current results compared with data 5 years ago in a specialized dermatology department. J Eur Acad Dermatol Venereol 24(9):1017–1025
    Demetriou M, Papanas N, Panopoulou M, Papatheodorou K, Maltezos E (2013) Determinants of microbial load in infected diabetic foot ulcers: a pilot study. Int J Endocrinol 2013:858206
    Tascini C, Piaggesi A, Tagliaferri E, Iacopi E, Fondelli S, Tedeschi A, Rizzo L, Leonildi A, Menichetti F (2011) Microbiology at first visit of moderate-to-severe diabetic foot infection with antimicrobial activity and a survey of quinolone monotherapy. Diabetes Res Clin Pract 94(1):133–139
    Jockenhofer F, Gollnick H, Herberger K, Isbary G, Renner R, Stucker M, Valesky E, Wollina U, Weichenthal M, Karrer S, Klode J, Dissemond J (2013) Bacteriological pathogen spectrum of chronic leg ulcers: results of a multicenter trial in dermatologic wound care centers differentiated by regions. J Dtsch Dermatol Ges 11(11):1057–1063
    Shahi SK, Singh VK, Kumar A (2013) Detection of Escherichia coli and associated beta-lactamases genes from diabetic foot ulcers by multiplex PCR and molecular modeling and docking of SHV-1, TEM-1, and OXA-1 beta-lactamases with clindamycin and piperacillin-tazobactam. PLoS One 8(7), e68234. doi: 10.1371/journal.pone.0068234
    Siddiqui AR, Bernstein JM (2010) Chronic wound infection: facts and controversies. Clin Dermatol 28(5):519–526
    Fulop AM, Dhimmer S, Deluca JR, Johanson DD, Lenz RV, Patel KB, Douris PC, Enwemeka CS (2009) A meta-analysis of the efficacy of phototherapy in tissue repair. Photomed Laser Surg 27(5):695–702
    Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(Suppl 1):S3–S40
    Nussbaum EL, Lilge L, Mazzulli T (2002) Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg 20(6):325–333
    Nussbaum EL, Lilge L, Mazzulli T (2002) Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light. Lasers Surg Med 31(5):343–351
    Nussbaum EL, Lilge L, Mazzulli T (2003) Effects of low-level laser therapy (LLLT) of 810 nm upon in vitro growth of bacteria: relevance of irradiance and radiant exposure. J Clin Laser Med Surg 21(5):283–290
    Dadras S, Mohajerani E, Eftekhar F, Hosseini M (2006) Different photoresponses of Staphylococcus aureus and Pseudomonas aeruginosa to 514, 532, and 633 nm low level lasers in vitro. Curr Microbiol 53(4):282–286
    Guffey JS, Wilborn J (2006) Effects of combined 405-nm and 880-nm light on Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Photomed Laser Surg 24(6):680–683
    Guffey JS, Payne W, Jones T, Martin K (2013) Evidence of resistance development by Staphylococcus aureus to an in vitro, multiple stage application of 405 nm light from a supraluminous diode array. Photomed Laser Surg 31(4):179–182
    Guffey JS, Wilborn J (2006) In vitro bactericidal effects of 405-nm and 470-nm blue light. Photomed Laser Surg 24(6):684–688
    Bumah VV, Masson-Meyers DS, Cashin SE, Enwemeka CS (2013) Wavelength and bacterial density influence the bactericidal effect of blue light on methicillin-resistant Staphylococcus aureus (MRSA). Photomed Laser Surg 31(11):547–553
    Enwemeka CS, Williams D, Enwemeka SK, Hollosi S, Yens D (2009) Blue 470-nm light kills methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Photomed Laser Surg 27(2):221–226
    Enwemeka CS, Williams D, Hollosi S, Yens D, Enwemeka SK (2008) Visible 405 nm SLD light photo-destroys methicillin-resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 40(10):734–737
    Bumah VV, Whelan HT, Masson-Meyers DS, Quirk B, Buchmann E, Enwemeka CS (2015) The bactericidal effect of 470-nm light and hyperbaric oxygen on methicillin-resistant Staphylococcus aureus (MRSA). Lasers Med Sci 30(3):1153–1159
    Bumah VV, Masson‐Meyers DS, Cashin S, Enwemeka CS (2015) Optimization of the antimicrobial effect of blue light on methicillin‐resistant Staphylococcus aureus (MRSA) in vitro. Lasers Surg Med 47(3):266–272
    Guirro RR, Weis LC (2009) Radiant power determination of low-level laser therapy equipment and characterization of its clinical use procedures. Photomed Laser Surg 27(4):633–639
    Sousa NT, Guirro RR, Santana HF, Silva CC (2012) In vitro analysis of bacterial morphology by atomic force microscopy of low level laser therapy 660, 830 and 904 nm. Photomed Laser Surg 30(5):281–285
    Morita S, Tagai C, Shiraishi T, Miyaji K, Iwamuro S (2013) Differential mode of antimicrobial actions of arginine-rich and lysine-rich histones against Gram-positive Staphylococcus aureus. Peptides 48:75–82
    Kushibiki T, Hirasawa T, Okawa S, Ishihara M (2013) Blue laser irradiation generates intracellular reactive oxygen species in various types of cells. Photomed Laser Surg 31(3):95–104
    Papageorgiou P, Katsambas A, Chu A (2000) Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris. Br J Dermatol 142(5):973–978
    Vatansever F, de Melo WC, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR (2013) Antimicrobial strategies centered around reactive oxygen species—bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 37(6):955–989
    Sousa NTA, Santos MF, Gomes RC, Brandino HE, Martinez R, Guirro RRJ (2015) Blue laser inhibits bacterial growth of staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Photomed Laser Surg 33(5):278–2