Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Monolithic zirconia for prosthetic reconstructions: advantages and limitations (2017)

  • Authors:
  • USP affiliated authors: CESAR, PAULO FRANCISCO - FO
  • USP Schools: FO
  • DOI: 10.1007/s40496-017-0153-z
  • Subjects: ZIRCÔNIA; PRÓTESE DENTÁRIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/s40496-017-0153-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s40496-017-0153-z (Fonte: Unpaywall API)

    Título do periódico: Current Oral Health Reports

    ISSN: 2196-3002



      Não possui versão em Acesso aberto

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Lucas Hian; LIMA, Erick; HOCHMAN, Miriam; ÖZCAN, Mutlu; CESAR, Paulo Francisco. Monolithic zirconia for prosthetic reconstructions: advantages and limitations. Current Oral Health Reports, Heidelberg, Springer, v. 4, n. 3, p. 197–200, 2017. DOI: 10.1007/s40496-017-0153-z.
    • APA

      Silva, L. H., Lima, E., Hochman, M., Özcan, M., & Cesar, P. F. (2017). Monolithic zirconia for prosthetic reconstructions: advantages and limitations. Current Oral Health Reports, 4( 3), 197–200. doi:10.1007/s40496-017-0153-z
    • NLM

      Silva LH, Lima E, Hochman M, Özcan M, Cesar PF. Monolithic zirconia for prosthetic reconstructions: advantages and limitations. Current Oral Health Reports. 2017 ;4( 3): 197–200.
    • Vancouver

      Silva LH, Lima E, Hochman M, Özcan M, Cesar PF. Monolithic zirconia for prosthetic reconstructions: advantages and limitations. Current Oral Health Reports. 2017 ;4( 3): 197–200.

    Referências citadas na obra
    Meyenberg KH, Lüthy H, Schärer P. Zirconia posts: a new all-ceramic concept for nonvital abutment teeth. J Esthet Restor Dent. 1995;7(2):73–80.
    Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater. 2009;5(5):1668–77.
    Tholey MJ, Swain MV, Thiel N. Thermal gradients and residual stresses in veneered Y-TZP frameworks. Dent Mater. 2011;27(11):1102–10.
    Guazzato M, Walton TR, Franklin W, et al. Influence of thickness and cooling rate on development of spontaneous cracks in porcelain/zirconia structures. Aust Dent J. 2010;55(3):306–10.
    Rues S, Kroger E, Muller D, et al. Effect of firing protocols on cohesive failure of all-ceramic crowns. J Dent. 2010;38(12):987–94.
    Meirelles PD, Spigolon YO, Borba M, et al. Leucite and cooling rate effect on porcelain-zirconia mechanical behavior. Dent Mater. 2016;32(12):e382–e88.
    Christensen GJ. The all-ceramic restoration dilemma: where are we? J Am Dent Assoc. 2011;142(6):668–71.
    Marchack BW, Sato S, Marchack CB, et al. Complete and partial contour zirconia designs for crowns and fixed dental prostheses: a clinical report. J Prosthet Dent. 2011;106(3):145–52.
    Rinke S, Fischer C. Range of indications for translucent zirconia modifications: clinical and technical aspects. Quintessence Int. 2013;44(8):557–66.
    Holt LR, Boksman L. Monolithic zirconia: minimizing adjustments. Dent Today. 2012;31(12):78. 80-1
    Zhang H, Li Z, Kim B-N, et al. Effect of alumina dopant on transparency of tetragonal zirconia. J Nanomat. 2012;2012:5.
    Heffernan MJ, Aquilino SA, Diaz-Arnold AM, et al. Relative translucency of six all-ceramic systems. Part I: core materials. J Prosthet Dent. 2002;88(1):4–9.
    Srdić VV, Winterer M, Hahn H. Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis. J Am Ceramic Soc. 2000;83(8):1853–60.
    Chevalier J. What future for zirconia as a biomaterial? Biomaterials. 2006;27(4):535–43.
    Fathy SM, El-Fallal AA, El-Negoly SA, et al. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater Odont Scand. 2015;1(2–4):86–92.
    Casolco SR, Xu J, Garay JE. Transparent/translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scr Mater. 2008;58(6):516–9.
    Klimke J, Trunec M, Krell A. Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence. J Am Ceram Soc. 2011;94(6):1850–8.
    •• Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater. 2014;30(10):1195–203. This review provides all possible methods available for developing tetragonal yttria-stabilized zirconia with improved translucency, highlighting the birefringence phenomenon of tetragonal zirconia as one of the mechanisms to improve translucency
    Jiang L, Liao Y, Wan Q, et al. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci: Mater in Med. 2011;22(11):2429–35.
    Cheng J, Agrawal D, Zhang Y, et al. Microwave sintering of transparent alumina. Mater Lett. 2002;56(4):587–92.
    Papanagiotou HP, Morgano SM, Giordano RA, et al. In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosthet Dent. 2006;96(3):154–64.
    Matsuzaki F, Sekine H, Honma S, et al. Translucency and flexural strength of monolithic translucent zirconia and porcelain-layered zirconia. Dent Mater J. 2015;34(6):910–7.
    • Anselmi-Tamburini U, Woolman JN, Munir ZA. Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv Functional Mater. 2007;17(16):3267–73. This study describes a sintering process to obtain translucent zirconia where grain size and its relation to translucency is eloborated
    • Denry I, Kelly J. Emerging ceramic-based materials for dentistry. J Dent Res. 2014;93(12):1235–42. This review gives an overview on emerging ceramics with an emphasis on specific challenges associated with monolithic zirconia ceramics
    Chevalier J, Deville S, Münch E, et al. Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials. 2004;25(24):5539–45.
    •• Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature. 1975;258(5537):703–4. This is a classical article describing the importance of phase transformation and its effects on mechanical properties of zirconia
    Tong H, Tanaka CB, Kaizer MR, et al. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceram Int. 2016;42(1 Pt B):1077–85.
    Seghi RR, Rosenstiel SF, Bauer P. Abrasion of human enamel by different dental ceramics in vitro. J Dent Res. 1991;70(3):221–5.
    • Preis V, Behr M, Handel G, et al. Wear performance of dental ceramics after grinding and polishing treatments. J Mech Behavior Biomed Mater. 2012;10:13–22. This article was one of the first that showed monolithic zirconia could wear antagonist dentition when not polished adequately
    Al-Haj Husain N, Camilleri J, Özcan M. Effect of polishing instruments and polishing regimens on surface topography and phase transformation of monolithic zirconia: an evaluation with XPS and XRD analysis. J Mech Behav Biomed Mater. 2016;64:104–12.
    Sadid-Zadeh R, Liu PR, Aponte-Wesson R, et al. Maxillary cement retained implant supported monolithic zirconia prosthesis in a full mouth rehabilitation: a clinical report. J Adv Prosthodont. 2013;5(2):209–17.
    Limmer B, Sanders AE, Reside G, et al. Complications and patient-centered outcomes with an implant-supported monolithic zirconia fixed dental prosthesis: 1 year results. J Prosthodont. 2014;23(4):267–75.
    Moscovitch M. Consecutive case series of monolithic and minimally veneered zirconia restorations on teeth and implants: up to 68 months. Int J Periodontics Restorative Dent. 2015;35(3):315–23.