Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Pharmacological beta-adrenergic receptor activation attenuates neutrophil recruitment by a mechanism dependent on nicotinic receptor and the spleen (2016)

  • Authors:
  • USP affiliated authors: FERREIRA, SERGIO HENRIQUE - FMRP ; CUNHA, FERNANDO DE QUEIROZ - FMRP ; CUNHA, THIAGO MATTAR - FMRP
  • USP Schools: FMRP; FMRP; FMRP
  • DOI: 10.1007/s10753-016-0372-9
  • Subjects: ANTAGONISMO DE DROGAS; LEUCÓCITOS; NEUTRÓFILOS; RECEPTORES ADRENÉRGICOS; BAÇO; NEUROIMUNOMODULAÇÃO
  • Keywords: Isoproterenol; Neutrophil; Neuroimmunomodulation; beta-adrenergic receptor; Nicotinic receptor
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Inflammation
    • ISSN: 0360-3997
    • Volume/Número/Paginação/Ano: v. 39, n. 4, p. 1405-1413, 2016
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s10753-016-0372-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s10753-016-0372-9 (Fonte: Unpaywall API)

    Título do periódico: Inflammation

    ISSN: 0360-3997,1573-2576



      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Inflammation

    ISSN: 0360-3997

    Citescore - 2017: 2.92

    SJR - 2017: 1.023

    SNIP - 2017: 0.946


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FMRP2852891pcd 2852891 Estantes Deslizantes
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Rangel L.; CASTANHEIRA, Fernanda V.; FIGUEIREDO, Jozi G.; et al. Pharmacological beta-adrenergic receptor activation attenuates neutrophil recruitment by a mechanism dependent on nicotinic receptor and the spleen. Inflammation, New York, v. 39, n. 4, p. 1405-1413, 2016. Disponível em: < http://dx.doi.org/10.1007/s10753-016-0372-9 > DOI: 10.1007/s10753-016-0372-9.
    • APA

      Silva, R. L., Castanheira, F. V., Figueiredo, J. G., Bassi, G. S., Ferreira, S. H., Cunha, F. de Q., et al. (2016). Pharmacological beta-adrenergic receptor activation attenuates neutrophil recruitment by a mechanism dependent on nicotinic receptor and the spleen. Inflammation, 39( 4), 1405-1413. doi:10.1007/s10753-016-0372-9
    • NLM

      Silva RL, Castanheira FV, Figueiredo JG, Bassi GS, Ferreira SH, Cunha F de Q, Cunha TM, Kanashiro A. Pharmacological beta-adrenergic receptor activation attenuates neutrophil recruitment by a mechanism dependent on nicotinic receptor and the spleen [Internet]. Inflammation. 2016 ; 39( 4): 1405-1413.Available from: http://dx.doi.org/10.1007/s10753-016-0372-9
    • Vancouver

      Silva RL, Castanheira FV, Figueiredo JG, Bassi GS, Ferreira SH, Cunha F de Q, Cunha TM, Kanashiro A. Pharmacological beta-adrenergic receptor activation attenuates neutrophil recruitment by a mechanism dependent on nicotinic receptor and the spleen [Internet]. Inflammation. 2016 ; 39( 4): 1405-1413.Available from: http://dx.doi.org/10.1007/s10753-016-0372-9

    Referências citadas na obra
    Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454: 428–35.
    Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews. Immunology 13(3): 159–75.
    McDonald, B., K. Pittman, G.B. Menezes, S.A. Hirota, I. Slaba, C.C. Waterhouse, P.L. Beck, D.A. Muruve, and P. Kubes. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330(6002): 362–6.
    Alves-Filho, J.C., A. Freitas, F. Spiller, F.O. Souto, and F.Q. Cunha. 2008. The role of neutrophils in severe sepsis. Shock 30: 3–9.
    Sherwood, E.R., and T. Toliver-Kinsky. 2004. Mechanisms of the inflammatory response. Best Practice & Research Clinical Anaesthesiology 18: 385–405.
    Segel, G.B., M.W. Halterman, and M.A. Lichtman. 2011. The paradox of the neutrophil’s role in tissue injury. Journal of Leukocyte Biology 89(3): 359–7.
    Németh, T., and A. Mócsai. 2012. The role of neutrophils in autoimmune diseases. Immunology Letters 143: 9–19.
    Mackay, C.R. 2008. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nature Immunology 9: 988–98.
    Sun, J., V. Singh, R. Kajino-Sakamoto, and A. Aballay. 2011. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science 332: 729–32.
    Torres-Rosas, R., G. Yehia, G. Peña, P. Mishra, Thompson-Bonilla M. del Rocio, M.A. Moreno-Eutimio, L.A. Arriaga-Pizano, A. Isibasi, and L. Ulloa. 2014. Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nature Medicine 20(3): 291–5.
    Ulloa, L. 2005. The vagus nerve and the nicotinic anti-inflammatory pathway. Nature Reviews. Drug Discovery 4(8): 673–84.
    Vida, G., G. Peña, E.A. Deitch, and L. Ulloa. 2011. α7-Cholinergic receptor mediates vagal induction of splenic norepinephrine. Journal Immunology 186(7): 4340–6.
    Tracey, K.J. 2011. Physiology and immunology of the cholinergic anti-inflammatory pathway. Journal of Clinical Investigation 117: 289–96.
    Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405(6785): 458–62.
    Rosas-Ballina, M., M. Ochani, W.R. Parrish, K. Ochani, Y.T. Harris, J.M. Huston, S. Chavan, and K.J. Tracey. 2008. Splenic nerve is required for cholinergic anti-inflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences 105: 11008–13.
    Rosas-Ballina, M., P.S. Olofsson, M. Ochani, S.I. Valdés-Ferrer, Y.A. Levine, C. Reardon, M.W. Tusche, V.A. Pavlov, U. Andersson, S. Chavan, T.W. Mak, and K.J. Tracey. 2011. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334(6052): 98–101.
    Vida, G., G. Peña, A. Kanashiro, M.R. Thompson-Bonilla, D. Palange, E.A. Deitch, and L. Ulloa. 2011. β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB Journal 25: 4476–85.
    Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421(6921): 384–8.
    Saeed, R.W., S. Varma, T. Peng-Nemeroff, B. Sherry, D. Balakhaneh, J. Huston, K.J. Tracey, Y. Al-Abed, and C.N. Metz. 2005. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. The Journal of Experimental Medicine 201(7): 1113–23.
    Huston, J.M., M. Rosas-Ballina, X. Xue, O. Dowling, K. Ochani, M. Ochani, M.M. Yeboah, P.K. Chatterjee, K.J. Tracey, and C.N. Metz. 2009. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. Journal of Immunology 183(1): 552–9.
    Mabley, J., S. Gordon, and P. Pacher. 2011. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation 34(4): 231–7.
    Tracey, K.J. 2010. Understanding immunity requires more than immunology. Nature Immunology 11: 561–564.
    Figueiredo, J., A.E. Ferreira, R.L. Silva, L. Ulloa, P. Grieco, T.M. Cunha, S.H. Ferreira, F.Q. Cunha, and A. Kanashiro. 2013. NDP-MSH inhibits neutrophil migration through nicotinic and adrenergic receptors in experimental peritonitis. Naunyn-Schmiedeberg’s Archives of Pharmacology 386(4): 311–8.
    Elenkov, I.J., G. Haskó, K.J. Kovács, and E.S. Vizi. 1995. Modulation of lipopolysaccharide-induced tumor necrosis factor-alpha production by selective alpha- and beta-adrenergic drugs in mice. Journal of Neuroimmunology 61(2): 123–31.
    Karimi, K., J. Bienenstock, L. Wang, and P. Forsythe. 2010. The vagus nerve modulates CD4+ T cell activity. Brain, Behavior, and Immunity 24(2): 316–23.
    Huston, J.M., M. Ochani, M. Rosas-Ballina, H. Liao, K. Ochani, V.A. Pavlov, M. Gallowitsch-Puerta, M. Ashok, C.J. Czura, B. Foxwell, K.J. Tracey, and L. Ulloa. 2006. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine 203(7): 1623–8.
    Rios-Santos, F., J.C. Alves-Filho, F.O. Souto, F. Spiller, A. Freitas, C.M.C. Lotufo, M.B.P. Soares, R.R. Santos, M.M. Teixeira, and F.Q. Cunha. 2007. Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide. American Journal of Respiratory and Critical Care Medicine 175(5): 490–497.
    Vieira, S.M., H.P. Lemos, R. Grespan, M.H. Napimoga, D. Dal-Secco, A. Freitas, T.M. Cunha, W.A. Verri Jr., D.A. Souza-Junior, M.C. Jamur, K.S. Fernandes, C. Oliver, J.S. Silva, M.M. Teixeira, and F.Q. Cunha. 2009. A crucial role for TNF-alpha in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5. British Journal of Pharmacology 158(3): 779–89.
    Dantzer, R., J.C. O’Connor, G.G. Freund, R.W. Johnson, and K.W. Kelley. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience 9: 46–56.
    Steinman, L. 2004. Elaborate interactions between the immune and nervous systems. Nature Immunology 5: 575–81.
    Imura, H., and J. Fukata. 1994. Endocrine-paracrine interaction in communication between the immune and endocrine systems. Activation of the hypothalamic-pituitary-adrenal axis in inflammation. European Journal of Endocrinology 130(1): 32–7.
    Szelényi, J., J.P. Kiss, and E.S. Vizi. 2000. Differential involvement of sympathetic nervous system and immune system in the modulation of TNF-alpha production by alpha2- and beta-adrenoceptors in mice. Journal of Neuroimmunology 103(1): 34–40.
    Spengler, R.N., S.W. Chensue, D.A. Giacherio, N. Blenk, and S.L. Kunkel. 1994. Endogenous norepinephrine regulates tumor necrosis factor-alpha production from macrophages in vitro. Journal of Immunology 152(6): 3024–31.
    Haskó, G., Z.H. Németh, C. Szabó, G. Zsilla, A.L. Salzman, and E.S. Vizi. 1998. Isoproterenol inhibits Il-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages. Brain Research Bulletin 45(2): 183–7.
    Mert, T., B. Tugtag, M. Kilinc, E. Sahin, H. Oksuz, and Y. Gunes. 2014. Preventive and therapeutic effects of a beta adrenoreceptor agonist, dobutamine, in carrageenan-induced inflammatory nociception in rats. Inflammation 37(5): 1814–25.
    Xiang, H., B. Hu, Z. Li, and J. Li. 2014. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation 37(5): 1763–70.
    Giuliani, D., A. Ottani, D. Altavilla, C. Bazzani, F. Squadrito, and S. Guarini. 2010. Melanocortins and the cholinergic anti-inflammatory pathway. Advances in Experimental Medicine and Biology 681: 71–87.
    Bugajski, A.J., D. Zurowski, P. Thor, and A. Gadek-Michalska. 2007. Effect of subdiaphragmatic vagotomy and cholinergic agents in the hypothalamic-pituitary-adrenal axis activity. Journal of Physiology and Pharmacology 58(2): 335–47.
    Scanzano, A., L. Schembri, E. Rasini, A. Luini, J. Dallatorre, M. Legnaro, R. Bombelli, T. Congiu, M. Cosentino, and F. Marino. 2015. Adrenergic modulation of migration, CD11b and CD18 expression, ROS and interleukin-8 production by human polymorphonuclear leukocytes. Inflammation Research 64(2): 127–35.
    Yu, H., Y.H. Yang, R. Rajaiah, and K.D. Moudgil. 2011. Nicotine-induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin-17 and anti-cyclic citrullinated peptide antibodies. Arthritis and Rheumatology 63(4): 981–91.
    Boland, C., V. Collet, E. Laterre, C. Lecuivre, X. Wittebole, and P.F. Laterre. 2011. Electrical vagus nerve stimulation and nicotine effects in peritonitis-induced acute lung injury in rats. Inflammation 34(1): 29–35.
    Nabe, T., F. Hosokawa, K. Matsuya, T. Morishita, A. Ikedo, M. Fujii, N. Mizutani, S. Yoshino, and D.D. Chaplin. 2011. Important role of neutrophils in the late asthmatic response in mice. Life Science 88(25-26): 1127–35.
    Blanchet, M.R., E. Israël-Assayag, and Y. Cormier. 2005. Modulation of airway inflammation and resistance in mice by a nicotinic receptor agonist. European Respiratory Journal 26(1): 21–7.
    Rehani, K., D.A. Scott, D. Renaud, H. Hamza, L.R. Williams, H. Wang, and M. Martin. 2008. Cotinine-induced convergence of the cholinergic and PI3 kinase-dependent anti-inflammatory pathways in innate immune cells. Biochimica et Biophysica Acta 1783(3): 375–82.
    Parrish, W.R., M. Rosas-Ballina, M. Gallowitsch-Puerta, M. Ochani, K. Ochani, L.H. Yang, L. Hudson, X. Lin, N. Patel, S.M. Johnson, S. Chavan, R.S. Goldstein, C.J. Czura, E.J. Miller, Y. Al-Abed, K.J. Tracey, and V.A. Pavlov. 2008. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Molecular Medicine 14(9-10): 567–74.