Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate (2017)

  • Authors:
  • USP affiliated authors: ELER, JOANIR PEREIRA - FZEA ; FERRAZ, JOSÉ BENTO STERMAN - FZEA
  • USP Schools: FZEA; FZEA
  • DOI: 10.1186/s40104-017-0190-4
  • Subjects: PARASITOLOGIA VETERINÁRIA; FENÓTIPOS; OVELHAS; CLIMATOLOGIA TROPICAL; GENÉTICA ANIMAL
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1186/s40104-017-0190-4 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1186/s40104-017-0190-4 (Fonte: Unpaywall API)

    Título do periódico: Journal of Animal Science and Biotechnology

    ISSN: 2049-1891

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher




        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Journal of Animal Science and Biotechnology

    ISSN: 1674-9782

    Citescore - 2017: 3.22

    SJR - 2017: 1.228

    SNIP - 2017: 1.676


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    FZEA2854561-10PCD^2017^Gen
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BERTON, Mariana Piatto; SILVA, Rafael Medeiros de Oliveira; PERIPOLLI, Elisa; et al. Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. Journal of Animal Science and Biotechnology, London, v. 8, p. 1-16, 2017. Disponível em: < https://doi.org/10.1186/s40104-017-0190-4 > DOI: 10.1186/s40104-017-0190-4.
    • APA

      Berton, M. P., Silva, R. M. de O., Peripolli, E., Stafuzza, N. B., Martin, J. F., Álvarez, M. S., et al. (2017). Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. Journal of Animal Science and Biotechnology, 8, 1-16. doi:10.1186/s40104-017-0190-4
    • NLM

      Berton MP, Silva RM de O, Peripolli E, Stafuzza NB, Martin JF, Álvarez MS, Gaviña BV, Toro MA, Banchero G, Oliveira PS, Eler JP, Baldi F, Ferraz JBS. Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate [Internet]. Journal of Animal Science and Biotechnology. 2017 ; 8 1-16.Available from: https://doi.org/10.1186/s40104-017-0190-4
    • Vancouver

      Berton MP, Silva RM de O, Peripolli E, Stafuzza NB, Martin JF, Álvarez MS, Gaviña BV, Toro MA, Banchero G, Oliveira PS, Eler JP, Baldi F, Ferraz JBS. Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate [Internet]. Journal of Animal Science and Biotechnology. 2017 ; 8 1-16.Available from: https://doi.org/10.1186/s40104-017-0190-4

    Referências citadas na obra
    Zygoyiannis D. Sheep production in the world and in Greece. Small Rumin Res. 2006;62:143–7.
    Perry BD, Randolph TF, Mcdermott JJ, Sones KR, Thornton PK. Investing in Animal Health Research to Alleviate Poverty. ILRI (International Livestock Research Institute); 2002.
    Liu J, Zhang L, Xu L, Ren H, Lu J, Zhang X, et al. Analysis of copy number variations in the sheep genome using 50K SNP BeadChip array. BMC Genomics. 2013;14:229.
    Da Silva M V, Lopes PS, Guimarães SE, De R, Torres A. Utilização de marcadores genéticos em suínos. I. Características reprodutivas e de resistência a doenças The use of genetic markers in swine. I. Reproductive and disease resistance traits. 2002;
    Amarante AFT, Bricarello PA, Rocha RA, Gennari SM. Resistance of Santa Ines, Suffolk and Ile de France sheep to naturally acquired gastrointestinal nematode infections. Vet Parasitol. 2004;120:91–106.
    O’Connor LJ, Walkden-Brown SW, Kahn LP. Ecology of the free-living stages of major trichostrongylid parasites of sheep. Vet Parasitol. 2006;142:1–15.
    Rocha RA, Amarante AFT, Bricarello PA. Comparison of the susceptibility of Santa Inês and Ile de France ewes to nematode parasitism around parturition and during lactation. Small Rumin Res. 2004;55:65–75.
    Bricarello PA, Amarante AFT, Rocha RA, Cabral Filho SL, Huntley JF, Houdijk JGM, et al. Influence of dietary protein supply on resistance to experimental infections with Haemonchus contortus in Ile de France and Santa Ines lambs. Vet Parasitol. 2005;134:99–109.
    Costa RLD, Bueno MS, Veríssimo CJ, Cunha EA, Santos LE, Oliveira SM, et al. Performance and nematode infection of ewe lambs on intensive rotational grazing with two different cultivars of Panicum maximum. Trop Anim Health Prod. 2007;39:255–63.
    Woolaston RR, Piper LR. Selection of Merino sheep for resistance to Haemonchus contortus: genetic variation. Anim Semit. 2016;62:451–60.
    Woolaston RR, Windon RG. Selection of sheep for response to Trichostrongylus colubriformis larvae: genetic parameters. Anim Sci. 2016;73:41–8.
    Morris CA, Wheeler M, Watson TG, Hosking BC, Leathwick DM. Direct and correlated responses to selection for high or low faecal nematode egg count in Perendale sheep. New Zeal J Agric Res. 2005;48:10.
    Karlsson LJE, Greeff JC. Selection response in fecal worm egg counts in the Rylington Merino parasite resistant flock. Aust J Exp Agric. 2006;46:809–11.
    Mcewan JC. Developing genomic resources for whole genome selection. Proceedings of the New Zealand Society of Animal Production. 2007. p. 148–53.
    Kemper KE. The implications for the host-parasite relationship when sheep are bred for enhanced resistance to gastrointestinal nematodes. PhD thesis. Melbourne: The University of Melbourne; 2010.
    Pickering NK, Blair HT, Hickson RE, Dodds KG, Johnson PL, McEwan JC. Genetic relationships between dagginess, breech bareness, and wool traits in New Zealand dual-purpose sheep. J Anim Sci. 2013;91:4578–88.
    Mcrae KM, Stear MJ, Good B, Keane OM. The host immune response to gastrointestinal nematode infection in sheep. Parasite Immunol. 2015;37:605–13.
    Miller JE, Horohov DW. Immunological aspects of nematode parasite control in sheep. J Anim Sci. 2006;84(Suppl):124–32.
    Bolormaa S, van der Werf JHJ, Walkden-Brown SW, Marshall K, Ruvinsky A. A quantitative trait locus for faecal worm egg and blood eosinophil counts on chromosome 23 in Australian goats. J Anim Breed Genet. 2010;127:207–14.
    Alba-Hurtado F, Muñoz-Guzmán MA. Immune Responses Associated with Resistance to Haemonchosis in Sheep. Biomed Res. Int. 2013. doi: 10.1155/2013/162158 .
    Coltman DW, Wilson K, Pilkington JG, Stear MJ, Pemberton JM. A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology. 2001;122:571–82.
    Crawford AM, Paterson KA, Dodds KG, Diez Tascon C, Williamson PA, Roberts Thomson M, et al. Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees. BMC Genomics. 2006;7:178.
    McRae KM, McEwan JC, Dodds KG, Gemmell NJ. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genomics. 2014;15:637.
    Benavides MV, Sonstegard TS, Kemp S, Mugambi JM, Gibson JP, Baker RL, et al. Identification of novel loci associated with gastrointestinal parasite resistance in a red Maasai x Dorper backcross population. PLoS One. 2015;10:1–20.
    Pickering NK, Auvray B, Dodds KG, Mcewan JC. Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep. BMC Genomics. 2011;16:1–11.
    Atlija M, Arranz J-J, Martinez-Valladares M, Gutiérrez-Gil B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet Sel Evol. 2016;48:4.
    Ueno H, Gonçalves PC. Manual para diagnóstico das helmintoses de ruminantes. 1998. p. 149.
    Van Wyk JA, Cabaret J, Michael LM. Morphological identification of nematode larvae of small ruminants and cattle simplified. Vet Parasitol. 2004;119:277–306.
    Gordon H McL. The diagnosis of helminthosis in sheep. Med. Vet. Rev.1967; 67(140–168).
    Russel AJF, Doney JM, Gunn RG. Subjective assessment of body fat in live sheep. J Agric Sci, Camb. DigiTop - USDA’s Digital Desktop Library. 2016;72:451–4.
    Bath GF, Hansen JW, Krecek RC, Van Wyk JA, Vatta A. Sustainable approaches for managing haemonchosis in sheep and goats. Final Report of Food and Agricultural Organization (FAO) Technical Cooperation Project in South Africa. Food and Agriculture Organization of the United Nations; 2001.
    Gianola D, Fernando RL. Bayesian methods in animal breeding theory. J Anim Sci. 1986;63:217–44.
    Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci. 2010;93:743–52.
    VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, et al. Invited review: reliability of genomic predictions for north American Holstein bulls. J Dairy Sci. 2009;92:16–24.
    Vitezica ZG, Aguilar I, Misztal I, Legarra A. Bias in genomic predictions for populations under selection. Genet. Res. (Camb). 2011;93:357–66.
    Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. BLUPF90 and related programs (BGF90). Proc. 7th World Congr. Genet. Appl. to Livest. Prod. 2002;28:21–2
    Geweke J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo JM, Berger JO, David AP, Smith AFM, editors. Bayesian statistics. New York: Oxford University; 1992. p. 625-31. Cap. 4
    Heidelberg P, Welch P. Simulation run length control in the presence of an initial transient. Oper Res. 1983;31:1109–14.
    Raftery AE, Lewis S. How many iterations in the Gibbs sampler? Bayesian Stat. 1992:763–73.
    R Development Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008. ISBN 3–900051–07-0. URL http://www.R-project.org . Accessed 25 Aug 2016.
    Aguilar I, Misztal I, Legarra A, Tsuruta S. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. J Anim Breed Genet. 2011;128:422–8.
    Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet Res (Camb). 2012;94:73–83.
    Strandén I, Garrick DJ. Technical note: derivation of equivalent computing algorithms for genomic predictions and reliabilities of animal merit. J Dairy Sci. 2009;92:2971–5.
    Zhang Z, Liu J, Ding X, Bijma P, de Koning DJ, Zhang Q. Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS One. 2010;5:1–8.
    Wang H, Misztal I, Legarra A. Differences between genomic-based and pedigree-based relationships in a chicken population, as a function of quality control and pedigree links among individuals. J Anim Breed Genet. 2014;131:445–51.
    Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.
    McRae AF, McEwan JC, Dodds KG, Wilson T, Crawford AM, Slate J. Linkage disequilibrium in domestic sheep. Genetics. 2002;160:1113–22.
    McRae AF, Pemberton JM, Visscher PM. Modeling linkage disequilibrium in natural populations: the example of the Soay sheep population of St. Kilda, Scotland. Genetics. 2005;171:251–8.
    Meadows JRS, Chan EKF, Kijas JW. Linkage disequilibrium compared between five populations of domestic sheep. BMC Genet. 2008;9:61.
    García-Gámez E, Sahana G, Gutiérrez-Gil B, Arranz J-J. Linkage disequilibrium and inbreeding estimation in Spanish Churra sheep. BMC Genet. 2012;13:43.
    Mastrangelo S, Di Gerlando R, Tolone M, Tortorici L, Sardina MT, Portolano B. Genome wide linkage disequilibrium and genetic structure in Sicilian dairy sheep breeds. BMC Genet. 2014;15:108.
    Zhao F, Wang G, Zeng T, Wei C, Zhang L, Wang H, et al. Estimations of genomic linkage disequilibrium and effective population sizes in three sheep populations. Livest Sci. 2014;170:22–9.
    Bisset SA, Van Wyk JA, Bath GF, Morris CA, Stenson MO, Malan FS. Phenotypic and genetic relationships amongst FAMACHA score, faecal egg count and performance data in Merino sheep exposed to Haemonchus contortus infection in South Africa. In: Proceedings of the 5th International Sheep Veterinary Congress, Stellenbosch, 2011.
    Bishop SC, Jackson F, Coop RL, Stear MJ. Genetic parameters for resistance to nematode infections in Texel lambs and their utility in breeding programmes. Anim Sci. 2004;78:185–94.
    Benavides MV, de Souza CJH, Moraes JCF, Berne MEA. Is it feasible to select humid sub-tropical Merino sheep for faecal egg counts? Small Rumin Res. 2016;137:73–80.
    Riley DG, Van Wyk JA. Genetic parameters for FAMACHA© score and related traits for host resistance/resilience and production at differing severities of worm challenge in a Merino flock in South Africa. Vet Parasitol. 2009;164:44–52.
    Hawkins PT, Stephens LR. PI3K signalling in inflammation. Biochim Biophys Acta - Mol Cell Biol Lipids. 1851;2015:882–97.
    Prasad KVS, Ao Z, Yoon Y, Wu MX, Rizk M, Jacquot S, et al. CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Immunology. 1997;94:6346–51.
    Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem. 2000;275:22313–23.
    Junior Janeway CA, Travers P, Walport M, Shlomchik MJ. Immunobiology. 5th ed. New York: Garland Science; 2001.
    Cooper MD, Herrin BR. How did our complex immune system evolve? Nat Rev Immunol. 2010;10:2–3.
    Trzaskowski B, Latek D, Yuan S, Ghoshdastider U, Debinski A, Filipek S. Action of molecular switches in GPCRs--theoretical and experimental studies. Curr Med Chem. 2012;19:1090–109.
    Teichmann SA, Chothia C. Immunoglobulin superfamily proteins in Caenorhabditis elegans. J Mol Biol. 2000;296:1367–83.
    Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R, et al. Cell surface antigen CD109 is a novel member of the alpha(2) macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood. 2002;99:1683–91.
    Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K, et al. Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature. 2000;407:383–6.
    Reymond N, Fabre S, Lecocq E, Adelaide J, Dubreuil P, Lopez M. Nectin4/PRR4, a new Afadin-associated member of the Nectin family that trans-interacts with Nectin1/PRR1 through V domain interaction. J Biol Chem. 2001;276:43205–15.
    Sheridan C, Sadaria M, Bhat-Nakshatri P, Goulet R, Edenberg HJ, McCarthy BP, et al. Negative regulation of MHC class II gene expression by CXCR4. Exp Hematol. 2006;34:1085–92.
    Contento RL, Molon B, Boularan C, Pozzan T, Manes S, Marullo S, et al. CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci. 2008;105:10101–6.
    Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12:121–7.
    Shanaka WW, Rodrigo I, Jin X, Blackley SD, Rose RC, Schlesinger JJ. Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fc-gamma-RIA (CD64) or Fc-gamma-RIIA (CD32). J Virol. 2006;80:10128–38.
    Williams MJ, Ando I, Hultmark D. Drosophila melanogaster Rac2 is necessary for a proper cellular immune response. Genes Cells. 2005;10:813–23.
    Zanin-zhorov A, Cahalon L, Tal G, Margalit R, Lider O, Cohen IR. Heat shock protein 60 enhances CD4 + CD25 + regulatory T cell function via innate TLR2 signaling. J Clin Invest. 2006;116:2022–32.
    Vasilevko V, Ghochikyan A, Holterman MJ, Agadjanyan MG. T-cell proliferation after activation with suboptimal doses of PHA. DNA Cell Biol. 2002;21:137–49.