Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Constraints on the relaxion mechanism with strongly interacting vector-fermions (2017)

  • Authors:
  • USP affiliated authors: BERTUZZO, ENRICO - IF
  • USP Schools: IF
  • DOI: 10.1007/JHEP08(2017)093
  • Subjects: FÉRMIO; BÓSON DE HIGGS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    DOI or search this record in
    Informações sobre o DOI: 10.1007/JHEP08(2017)093 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1007/JHEP08(2017)093 (Fonte: Unpaywall API)

    Título do periódico: Journal of High Energy Physics

    ISSN: 1029-8479

    • Melhor URL em Acesso Aberto:


    • Outras alternativas de URLs em Acesso Aberto:


        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher


        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository



    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BEAUCHESNE, Hughes; CORTONA, Giovanni Grilli di; BERTUZZO, Enrico. Constraints on the relaxion mechanism with strongly interacting vector-fermions. JOURNAL OF HIGH ENERGY PHYSICS, New York, v. 2017, n. 8, p. 093, 2017. DOI: 10.1007/JHEP08(2017)093.
    • APA

      Beauchesne, H., Cortona, G. G. di, & Bertuzzo, E. (2017). Constraints on the relaxion mechanism with strongly interacting vector-fermions. JOURNAL OF HIGH ENERGY PHYSICS, 2017( 8), 093. doi:10.1007/JHEP08(2017)093
    • NLM

      Beauchesne H, Cortona GG di, Bertuzzo E. Constraints on the relaxion mechanism with strongly interacting vector-fermions. JOURNAL OF HIGH ENERGY PHYSICS. 2017 ; 2017( 8): 093.
    • Vancouver

      Beauchesne H, Cortona GG di, Bertuzzo E. Constraints on the relaxion mechanism with strongly interacting vector-fermions. JOURNAL OF HIGH ENERGY PHYSICS. 2017 ; 2017( 8): 093.

    Referências citadas na obra
    Yu. A. Golfand and E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [Pisma Zh. Eksp. Teor. Fiz. 13 (197) 452] [ INSPIRE ].
    D.V. Volkov and V.P. Akulov, Is the neutrino a goldstone particle?, Phys. Lett. 46B (1973) 109.
    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [ INSPIRE ].
    J. Wess and B. Zumino, Supergauge invariant extension of quantum electrodynamics, Nucl. Phys. B 78 (1974) 1 [ INSPIRE ].
    S. Ferrara and B. Zumino, Supergauge invariant Yang-Mills theories, Nucl. Phys. B 79 (1974) 413 [ INSPIRE ].
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [ INSPIRE ].
    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [ arXiv:1401.2457 ] [ INSPIRE ].
    G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1-316 [ arXiv:1506.01961 ] [ INSPIRE ].
    Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [ hep-ph/0506256 ] [ INSPIRE ].
    G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP 02 (2007) 009 [ hep-ph/0609152 ] [ INSPIRE ].
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [ arXiv:1504.07551 ] [ INSPIRE ].
    J.R. Espinosa et al., Cosmological Higgs-axion interplay for a naturally small electroweak scale, Phys. Rev. Lett. 115 (2015) 251803 [ arXiv:1506.09217 ] [ INSPIRE ].
    E. Hardy, Electroweak relaxation from finite temperature, JHEP 11 (2015) 077 [ arXiv:1507.07525 ] [ INSPIRE ].
    S.P. Patil and P. Schwaller, Relaxing the electroweak scale: the role of broken dS symmetry, JHEP 02 (2016) 077 [ arXiv:1507.08649 ] [ INSPIRE ].
    O. Antipin and M. Redi, The half-composite two Higgs doublet model and the relaxion, JHEP 12 (2015) 031 [ arXiv:1508.01112 ] [ INSPIRE ].
    J. Jaeckel, V.M. Mehta and L.T. Witkowski, Musings on cosmological relaxation and the hierarchy problem, Phys. Rev. D 93 (2016) 063522 [ arXiv:1508.03321 ] [ INSPIRE ].
    R.S. Gupta, Z. Komargodski, G. Perez and L. Ubaldi, Is the relaxion an axion?, JHEP 02 (2016) 166 [ arXiv:1509.00047 ] [ INSPIRE ].
    B. Batell, G.F. Giudice and M. McCullough, Natural heavy supersymmetry, JHEP 12 (2015) 162 [ arXiv:1509.00834 ] [ INSPIRE ].
    O. Matsedonskyi, Mirror cosmological relaxation of the electroweak scale, JHEP 01 (2016) 063 [ arXiv:1509.03583 ] [ INSPIRE ].
    L. Marzola and M. Raidal, Natural relaxation, Mod. Phys. Lett. A 31 (2016) 1650215 [ arXiv:1510.00710 ] [ INSPIRE ].
    K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [ arXiv:1511.00132 ] [ INSPIRE ].
    D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [ arXiv:1511.01827 ] [ INSPIRE ].
    S. Di Chiara et al., Relaxion cosmology and the price of fine-tuning, Phys. Rev. D 93 (2016) 103527 [ arXiv:1511.02858 ] [ INSPIRE ].
    L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, Relaxion monodromy and the weak gravity conjecture, JHEP 04 (2016) 020 [ arXiv:1512.00025 ] [ INSPIRE ].
    N. Fonseca, L. de Lima, C.S. Machado and R.D. Matheus, Large field excursions from a few site relaxion model, Phys. Rev. D 94 (2016) 015010 [ arXiv:1601.07183 ] [ INSPIRE ].
    H. Gertov, F. Sannino, L. Pearce and L. Yang, Baryogenesis via elementary goldstone Higgs relaxation, Phys. Rev. D 93 (2016) 115042 [ arXiv:1601.07753 ] [ INSPIRE ].
    A. Fowlie, C. Balázs, G. White, L. Marzola and M. Raidal, Naturalness of the relaxion mechanism, JHEP 08 (2016) 100 [ arXiv:1602.03889 ] [ INSPIRE ].
    J.L. Evans, T. Gherghetta, N. Nagata and Z. Thomas, Naturalizing supersymmetry with a two-field relaxion mechanism, JHEP 09 (2016) 150 [ arXiv:1602.04812 ] [ INSPIRE ].
    T. Kobayashi, O. Seto, T. Shimomura and Y. Urakawa, Relaxion window, arXiv:1605.06908 [ INSPIRE ].
    A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP 12 (2016) 101 [ arXiv:1607.01786 ] [ INSPIRE ].
    K. Choi and S.H. Im, Constraints on relaxion windows, JHEP 12 (2016) 093 [ arXiv:1610.00680 ] [ INSPIRE ].
    T. Flacke, C. Frugiuele, E. Fuchs, R.S. Gupta and G. Perez, Phenomenology of relaxion-Higgs mixing, JHEP 06 (2017) 050 [ arXiv:1610.02025 ] [ INSPIRE ].
    L. McAllister, P. Schwaller, G. Servant, J. Stout and A. Westphal, Runaway relaxion monodromy, arXiv:1610.05320 [ INSPIRE ].
    K. Choi, H. Kim and T. Sekiguchi, Dynamics of the cosmological relaxation after reheating, Phys. Rev. D 95 (2017) 075008 [ arXiv:1611.08569 ] [ INSPIRE ].
    J.L. Evans, T. Gherghetta, N. Nagata and M. Peloso, Low-scale D-term inflation and the relaxion mechanism, Phys. Rev. D 95 (2017) 115027 [ arXiv:1704.03695 ] [ INSPIRE ].
    A. Kusenko, L. Pearce and L. Yang, Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry, Phys. Rev. Lett. 114 (2015) 061302 [ arXiv:1410.0722 ] [ INSPIRE ].
    L. Yang, L. Pearce and A. Kusenko, Leptogenesis via Higgs condensate relaxation, Phys. Rev. D 92 (2015) 043506 [ arXiv:1505.07912 ] [ INSPIRE ].
    A. Kusenko, K. Schmitz and T.T. Yanagida, Leptogenesis via axion oscillations after inflation, Phys. Rev. Lett. 115 (2015) 011302 [ arXiv:1412.2043 ] [ INSPIRE ].
    T. You, A dynamical weak scale from inflation, arXiv:1701.09167 [ INSPIRE ].
    A. Arvanitaki, S. Dimopoulos, V. Gorbenko, J. Huang and K. Tilburg, A small weak scale from a small cosmological constant, JHEP 05 (2017) 071 [ arXiv:1609.06320 ] [ INSPIRE ].
    A. Agugliaro, O. Antipin, D. Becciolini, S. De Curtis and M. Redi, UV complete composite Higgs models, Phys. Rev. D 95 (2017) 035019 [ arXiv:1609.07122 ] [ INSPIRE ].
    A. Joglekar, P. Schwaller and C.E.M. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, JHEP 12 (2012) 064 [ arXiv:1207.4235 ] [ INSPIRE ].
    A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [ INSPIRE ].
    G. German, G.G. Ross and S. Sarkar, Low scale inflation, Nucl. Phys. B 608 (2001) 423 [ hep-ph/0103243 ] [ INSPIRE ].
    M. Dine and L. Pack, Studies in small field inflation, JCAP 06 (2012) 033 [ arXiv:1109.2079 ] [ INSPIRE ].
    S. Iso, K. Kohri and K. Shimada, Dynamical fine-tuning of initial conditions for small field inflation, Phys. Rev. D 93 (2016) 084009 [ arXiv:1511.05923 ] [ INSPIRE ].
    U. Amaldi et al., A comprehensive analysis of data pertaining to the weak neutral current and the intermediate vector boson masses, Phys. Rev. D 36 (1987) 1385 [ INSPIRE ].
    G. Costa, J.R. Ellis, G.L. Fogli, D.V. Nanopoulos and F. Zwirner, Neutral currents within and beyond the standard model, Nucl. Phys. B 297 (1988) 244 [ INSPIRE ].
    P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0 , sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [ INSPIRE ].
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [ INSPIRE ].
    J. Erler and P. Langacker, Implications of high precision experiments and the CDF top quark candidates, Phys. Rev. D 52 (1995) 441 [ hep-ph/9411203 ] [ INSPIRE ].
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [ INSPIRE ].
    G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys. B 369 (1992) 3 [Erratum ibid. B 376 (1992) 444] [ INSPIRE ].
    B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [ INSPIRE ].
    G. Altarelli, R. Barbieri and F. Caravaglios, Nonstandard analysis of electroweak precision data, Nucl. Phys. B 405 (1993) 3 [ INSPIRE ].
    R. Barbieri and A. Strumia, What is the limit on the Higgs mass?, Phys. Lett. B 462 (1999) 144 [ hep-ph/9905281 ] [ INSPIRE ].
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [ hep-ph/0405040 ] [ INSPIRE ].
    Tevatron Electroweak Working Group, CDF, DELPHI, SLD Electroweak and Heavy Flavour Groups, ALEPH, LEP Electroweak Working Group, SLD, OPAL, D0, L3 collaboration and L.E.W. Group, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [ INSPIRE ].
    J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP 12 (2016) 135 [ arXiv:1608.01509 ] [ INSPIRE ].
    I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [ hep-ph/9306267 ] [ INSPIRE ].
    CDF, D0 collaboration, T.E.W. Group, 2012 update of the combination of CDF and D0 results for the mass of the W boson, arXiv:1204.0042 [ INSPIRE ].
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3 collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [ hep-ex/0509008 ] [ INSPIRE ].
    C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A global fit to extended oblique parameters, Phys. Lett. B 326 (1994) 276 [ hep-ph/9307337 ] [ INSPIRE ].
    C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, Model independent global constraints on new physics, Phys. Rev. D 49 (1994) 6115 [ hep-ph/9312291 ] [ INSPIRE ].
    P. Bamert and C.P. Burgess, Negative S and light new physics, Z. Phys. C 66 (1995) 495 [ hep-ph/9407203 ] [ INSPIRE ].
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP 11 (2014) 039 [ arXiv:1403.1582 ] [ INSPIRE ].
    O.J.P. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett. B 495 (2000) 147 [ hep-ph/0009158 ] [ INSPIRE ].
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [ arXiv:1305.1933 ] [ INSPIRE ].
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [ arXiv:0811.4169 ] [ INSPIRE ].
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [ arXiv:1102.1898 ] [ INSPIRE ].
    P. Bechtle, O. Brein, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein et al., Recent developments in HiggsBounds and a preview of HiggsSignals, PoS(CHARGED 2012)024 [ arXiv:1301.2345 ] [ INSPIRE ].
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [ arXiv:1311.0055 ] [ INSPIRE ].
    B. Mellado Garcia, P. Musella, M. Grazzini and R. Harlander, CERN report 4: part I. Standard model predictions, LHCHXSWG-DRAFT-INT-2016-008 (2016).
    M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [ astro-ph/0408426 ] [ INSPIRE ].
    K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [ hep-ph/0604251 ] [ INSPIRE ].
    K. Jedamzik and M. Pospelov, Big Bang nucleosynthesis and particle dark matter, New J. Phys. 11 (2009) 105028 [ arXiv:0906.2087 ] [ INSPIRE ].
    R.H. Cyburt, J.R. Ellis, B.D. Fields and K.A. Olive, Updated nucleosynthesis constraints on unstable relic particles, Phys. Rev. D 67 (2003) 103521 [ astro-ph/0211258 ] [ INSPIRE ].
    P. Schwaller, D. Stolarski and A. Weiler, Emerging jets, JHEP 05 (2015) 059 [ arXiv:1502.05409 ] [ INSPIRE ].
    T. Cohen, M. Lisanti and H.K. Lou, Semivisible jets: dark matter undercover at the LHC, Phys. Rev. Lett. 115 (2015) 171804 [ arXiv:1503.00009 ] [ INSPIRE ].
    L. Carloni, J. Rathsman and T. Sjöstrand, Discerning secluded sector gauge structures, JHEP 04 (2011) 091 [ arXiv:1102.3795 ] [ INSPIRE ].
    E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B 160 (1979) 57 [ INSPIRE ].
    ATLAS collaboration, Measurement of the W ± Z boson pair-production cross section in pp collisions at s = 13 $$ \sqrt{s}=13 $$ TeV with the ATLAS Detector, Phys. Lett. B 762 (2016) 1 [ arXiv:1606.04017 ] [ INSPIRE ].
    CMS collaboration, Measurement of the WZ production cross section in pp collisions at s = 13 $$ \sqrt{s}=13 $$ TeV, Phys. Lett. B 766 (2017) 268 [ arXiv:1607.06943 ] [ INSPIRE ].
    ATLAS collaboration, Measurements of W ± Z production cross sections in pp collisions at s = 8 $$ \sqrt{s}=8 $$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings, Phys. Rev. D 93 (2016) 092004 [ arXiv:1603.02151 ] [ INSPIRE ].
    CMS collaboration, Measurement of the WZ production cross section in pp collisions at s = 7 $$ \sqrt{s}=7 $$ and 8 TeV and search for anomalous triple gauge couplings at s = 8 $$ \sqrt{s}=8 $$ TeV, Eur. Phys. J. C 77 (2017) 236 [ arXiv:1609.05721 ] [ INSPIRE ].
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [ arXiv:1310.1921 ] [ INSPIRE ].
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [ arXiv:1405.0301 ] [ INSPIRE ].
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [ hep-ph/0603175 ] [ INSPIRE ].
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [ arXiv:1307.6346 ] [ INSPIRE ].
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [ arXiv:1111.6097 ] [ INSPIRE ].
    ATLAS collaboration, Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data, ATLAS-CONF-2016-024 (2016).
    Cuts in Categories (CiC) Electron Identification, https://twiki.cern.ch/twiki/bin/view/ CMSPublic/SWGuideCategoryBasedElectronID (2017).
    ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at s = 13 $$ \sqrt{s}=13 $$ TeV, Eur. Phys. J. C 76 (2016) 292 [ arXiv:1603.05598 ] [ INSPIRE ].
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [ INSPIRE ].
    A.L. Read, Presentation of search results: the CL(s) technique, J. Phys. G 28 (2002) 2693 [ INSPIRE ].
    T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [ hep-ex/9902006 ] [ INSPIRE ].
    CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in pp collision data at s = 13 $$ \sqrt{s}=13 $$ TeV, CMS-PAS-SUS-16-039 (2016).
    F. Staub, SARAH4: a tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [ arXiv:1309.7223 ] [ INSPIRE ].
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [ arXiv:1205.6497 ] [ INSPIRE ].
    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [ hep-ph/0104016 ] [ INSPIRE ].
    P. Bandyopadhyay and R. Mandal, Vacuum stability in an extended standard model with a leptoquark, Phys. Rev. D 95 (2017) 035007 [ arXiv:1609.03561 ] [ INSPIRE ].
    LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, LEPSUSYWG/01-03.1 .
    LEP2 SUSY Working Group, ALEPH, DELPHI, L3 and OPAL experiments, LEPSUSYWG/02-04.1 .