Ver registro no DEDALUS
Exportar registro bibliográfico



New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists (2017)

  • Authors:
  • DOI: 10.1007/s00894-017-3444-3
  • Keywords: Sigma-1 receptor; 1-arylpyrazole; QSAR; PLS; MLP-ANN; Consensus modeling
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00894-017-3444-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed
    Versões disponíveis em Acesso Aberto do: 10.1007/s00894-017-3444-3 (Fonte: Unpaywall API)

    Título do periódico: Journal of Molecular Modeling

    ISSN: 1610-2940,0948-5023

      Não possui versão em Acesso aberto
    Informações sobre o Citescore
  • Título: Journal of Molecular Modeling

    ISSN: 1610-2940

    Citescore - 2017: 1.17

    SJR - 2017: 0.36

    SNIP - 2017: 0.461

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      OLIVEIRA, Aline A; LIPINSKI, Célio F; PEREIRA, Estevão B; et al. New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists. Journal of Molecular Modeling, New York, Springer, v. 23, p. 1-15, 2017. Disponível em: < > DOI: 10.1007/s00894-017-3444-3.
    • APA

      Oliveira, A. A., Lipinski, C. F., Pereira, E. B., Honório, K. M., Oliveira, P. R., Weber, K. C., et al. (2017). New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists. Journal of Molecular Modeling, 23, 1-15. doi:10.1007/s00894-017-3444-3
    • NLM

      Oliveira AA, Lipinski CF, Pereira EB, Honório KM, Oliveira PR, Weber KC, Romero RAF, Sousa AG de, Silva ABF da. New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists [Internet]. Journal of Molecular Modeling. 2017 ; 23 1-15.Available from:
    • Vancouver

      Oliveira AA, Lipinski CF, Pereira EB, Honório KM, Oliveira PR, Weber KC, Romero RAF, Sousa AG de, Silva ABF da. New consensus multivariate models based on PLS and ANN studies of sigma-1 receptor antagonists [Internet]. Journal of Molecular Modeling. 2017 ; 23 1-15.Available from:

    Referências citadas na obra
    Jensen TS, Baron R, Haanpää M, et al. (2011) A new definition of neuropathic pain. Pain 152:2204–2205
    Boureau F, Doubrère JF, Luu M (1990) Study of verbal description in neuropathic pain. Pain 42:145–152
    Galluzzi KE (2007) Managing neuropathic pain. J Am Osteopath Assoc 107(11 Suppl 6):ES39–ES48
    Nightingale S (2012) The neuropathic pain market. Nat Rev Drug Discov 11:101–102
    Martin WR, Eades CG, Thompson JA, et al. (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532
    Hellewell SB, Bowen WD (1990) A sigma-like binding site in rat pheochromocytoma (PC12) Cells: decreased affinity for (+)-benzomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res 527:244–253
    Quirion R, Bowen WD, Itzhak Y, et al. (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86
    Gundlach AL, Largent BL, Snyder SH (1986) Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. J Neurosci 6:1757–1770
    Maurice T, Su TP (2009) The pharmacology of sigma-1 receptors. Pharmacol Ther 124:195–206
    Wolfe Jr SA, Culp SG, de Souza EB (1989) Sigma-receptors in endocrine organs: identification, characterization, and autoradiographic localization in rat pituitary, adrenal, testis, and ovary. Endocrinology 124:1160–1172
    Hayashi T, Su TP (2004) σ-1 Receptor Ligands: Potential in the Treatment of Neuropsychiatric Disorders. CNS Drugs 18:269–284
    Díaz JL, Cuberes R, Berrocal J, et al. (2012) Synthesis and biological evaluation of the 1-arylpyrazole class of σ1 receptor antagonists: identification of 4-{2-[5-methyl-1-(naphthalen- 2-Yl)-1H-pyrazol-3-yloxy]ethyl}morpholine (S1RA, E-52862). J Med Chem 55:8211–8224
    Romero L, Zamanillo D, Nadal X, et al. (2012) Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization. Br J Pharmacol 166:2289–2306
    Abadias M, Escriche M, Vaqué A, et al. (2012) Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br J Clin Pharmacol 75:103–117
    Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13:3494–3504
    Lozano NBH, Oliveira RF, Weber KC, et al. (2013) Identification of electronic and structural descriptors of adenosine analogues related to inhibition of leishmanial glyceraldehyde-3-phosphate dehydrogenase. Molecules 18:5032–5050
    Lozano NBH, Maltarollo VG, Weber KC, et al. (2012) Molecular features for antitrypanosomal activity of thiosemicarbazones revealed by OPS-PLS QSAR studies. Med Chem (Los Angeles) 8:1045–1056
    Honório KM, de Lima EF, Quiles MG, et al. (2010) Artificial neural networks and the study of the psychoactivity of cannabinoid compounds. Chem Biol Drug Des 75:632–640
    Weber KC, da Silva ABF (2008) A chemometric study of the 5-HT1A receptor affinities presented by arylpiperazine compounds. Eur J Med Chem 43:364–372
    de Molfetta FA, Angelotti WFD, Romero RAF, et al. (2008) A neural networks study of quinone compounds with trypanocidal activity. J Mol Model 14:975–985
    Weber KC, Honório KM, Bruni AT, et al. (2006) A partial least squares regression study with antioxidant flavonoid compounds. Struct Chem 17:307–313
    Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: a pratical guide. Wiley, New York
    Zupan J (2003) Basics of artificial neural networks. In: Leardi R (ed) Nature-inspired methods in chemometrics: genetic algorithms and artificial neural networks. Elsevier, Amsterdam
    Zhu H, Tropsha A, Fourches D, et al. (2008) Combinatorial QSAR modeling of chemical toxicants tested against tetrahymena pyriformis. J Chem Inf Model 48:766–784
    Nizami B, Tetko IV, Koorbanally NA, Honarparvar B (2015) QSAR models and scaffold-based analysis of non-nucleoside HIV RT inhibitors. Chemom Intell Lab Syst 148:134–144
    Frisch MJ, Trucks GW, Schlegel HB, et al. (2009) Gaussian 09. Gaussian Inc, Wallingford
    Tetko IV, Gasteiger J, Todeschini R, et al. (2005) Virtual computational chemistry laboratory - design and description. J Comput Aided Mol Des 19:453–463
    de Oliveira DB, Gaudio AC (2000) BuildQSAR: a new computer program for QSAR analysis. Quant Struct Relationships 19:599–601
    Infometrix Inc. (2002) Pirouette 3.10. Infometrix Inc, Woodinville
    Martins JPA, Ferreira MMC (2013) QSAR modeling: a new open source computational package to generate and validate QSAR models. Quim Nova 36:554–560
    MathWorks (2011) MATLAB 7.12. The MathWorks Inc, Natick
    Haykin S (1999) In: Haykin SS (ed) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River, NJ
    Naik AR, Shafi PM, Kosbatwar SP (2013) Weather prediction using error minimization algorithm on feedforward artificial neural network. In: Mohapatra DP, Patnaik S (eds) Intelligent computing, networking, and informatics. Springer, New Delhi, pp 967–973
    Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488
    Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77
    Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20:770–787
    Wold S, Eriksson L (1995) Statistical validation of QSAR results. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. Wiley-VCH, New York
    Eriksson L, Jaworska J, Worth AP, et al. (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375
    Gálvez J, Garcia R, Salabert MT, Soler R (1994) Charge indexes. New topological descriptors. J Chem Inf Comput Sci 34:520–525
    Gálvez J, García-Domenech R, de Julián-Ortiz JV, Soler R (1995) Topological approach to drug design. J Chem Inf Comput Sci 35:272–284
    Glennon RA, Ablordeppey SY, Ismaiel AM, et al. (1994) Structural features important for σ1 receptor binding. J Med Chem 37:1214–1219
    Laurini E, Col VD, Mamolo MG, et al. (2011) Homology model and docking-based virtual screening for ligands of the σ1 receptor. ACS Med Chem Lett 2:834–839
    Rücker G, Rücker C (1993) Counts of all walks as atomic and molecular descriptors. J Chem Inf Comput Sci 33:683–695
    Schuur JH, Selzer P, Gasteiger J (1996) The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J Chem Inf Comput Sci 36:334–344
    Consonni V, Todeschini R, Pavan M (2002) Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci 42:682–692
    Moriguchi I, Hirono S, Liu Q, et al. (1992) Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull 40:127–130