Ver registro no DEDALUS
Exportar registro bibliográfico

Metrics


Metrics:

Rigorous numerics for ill-posed pdes: periodic orbits in the Boussinesq equation (2018)

  • Authors:
  • USP affiliated authors: GAMEIRO, MÁRCIO FUZETO - ICMC
  • USP Schools: ICMC
  • DOI: 10.1007/s00205-017-1186-0
  • Subjects: EQUAÇÕES DIFERENCIAIS; EQUAÇÕES DIFERENCIAIS PARCIAIS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1007/s00205-017-1186-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green
    Versões disponíveis em Acesso Aberto do: 10.1007/s00205-017-1186-0 (Fonte: Unpaywall API)

    Título do periódico: Archive for Rational Mechanics and Analysis

    ISSN: 0003-9527,1432-0673

    • Melhor URL em Acesso Aberto:
      • Página do artigo
      • Link para o PDF
      • Evidência: oa repository (via OAI-PMH title and first author match)
      • Licença:
      • Versão: submittedVersion
      • Tipo de hospedagem: repository


    • Outras alternativas de URLs em Acesso Aberto:
        • Página do artigo
        • Link para o PDF
        • Evidência: oa repository (via OAI-PMH title and first author match)
        • Licença:
        • Versão: submittedVersion
        • Tipo de hospedagem: repository


    Informações sobre o Citescore
  • Título: Archive for Rational Mechanics and Analysis

    ISSN: 0003-9527

    Citescore - 2017: 2.53

    SJR - 2017: 3.93

    SNIP - 2017: 1.984


  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    ICMC2857482-10PROD 2857482
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CASTELLI, Roberto; GAMEIRO, Márcio Fuzeto; LESSARD, Jean-Philippe. Rigorous numerics for ill-posed pdes: periodic orbits in the Boussinesq equation. Archive for Rational Mechanics and Analysis, Heidelberg, Berlin, Springer, v. 228, n. 1, p. 129-157, 2018. Disponível em: < http://dx.doi.org/10.1007/s00205-017-1186-0 > DOI: 10.1007/s00205-017-1186-0.
    • APA

      Castelli, R., Gameiro, M. F., & Lessard, J. -P. (2018). Rigorous numerics for ill-posed pdes: periodic orbits in the Boussinesq equation. Archive for Rational Mechanics and Analysis, 228( 1), 129-157. doi:10.1007/s00205-017-1186-0
    • NLM

      Castelli R, Gameiro MF, Lessard J-P. Rigorous numerics for ill-posed pdes: periodic orbits in the Boussinesq equation [Internet]. Archive for Rational Mechanics and Analysis. 2018 ; 228( 1): 129-157.Available from: http://dx.doi.org/10.1007/s00205-017-1186-0
    • Vancouver

      Castelli R, Gameiro MF, Lessard J-P. Rigorous numerics for ill-posed pdes: periodic orbits in the Boussinesq equation [Internet]. Archive for Rational Mechanics and Analysis. 2018 ; 228( 1): 129-157.Available from: http://dx.doi.org/10.1007/s00205-017-1186-0

    Referências citadas na obra
    Zgliczyński P., Konstantin M.: Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation. Found. Comput. Math. 1(3), 255–288 (2001)
    Zgliczyński P.: Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the Kuramoto-Sivashinsky PDE—a computer-assisted proof. Found. Comput. Math. 4(2), 157–185 (2004)
    Zgliczyński P.: Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs. Topol. Methods Nonlinear Anal. 36(2), 197–262 (2010)
    Kim M., Nakao M.T., Watanabe Y., Nishida T.: A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh-Bénard problems. Numer. Math. 111(3), 389–406 (2009)
    Heywood J.G., Nagata W., Nagata W., Nagata W.: A numerically based existence theorem for the Navier-Stokes equations. J. Math. Fluid Mech. 1(1), 5–23 (1999)
    Day, S., Hiraoka, Y., Mischaikow, K., Ogawa, T.: Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst., 4(1), 1–31 (electronic) (2005)
    Maier-Paape S., Miller U., Mischaikow K., Wanner T.: Rigorous numerics for the Cahn-Hilliard equation on the unit square. Rev. Mat. Complut. 21(2), 351–426 (2008)
    Arioli G., Koch H.: Integration of dissipative partial differential equations: a case study. SIAM J. Appl. Dyn. Syst. 9(3), 1119–1133 (2010)
    Arioli G., Koch H.: Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch. Ration. Mech. Anal. 197(3), 1033–1051 (2010)
    Gameiro M., Lessard J.-P.: Rigorous computation of smooth branches of equilibria for the three dimensional Cahn-Hilliard equation. Numer. Math. 117(4), 753–778 (2011)
    Gameiro M., Lessard J.-P.: Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates. SIAM J. Numer. Anal. 51(4), 2063–2087 (2013)
    Gameiro, Marcio, Lessard, Jean-Philippe: Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs. J. Differential Equations 249(9), 2237–2268 (2010)
    van den Berg J.B., Williams J. F.: Validation of the bifurcation diagram in the 2D Ohta–Kawasaki problem. Nonlinearity 30, 1584–1638 (2017)
    Breuer B., McKenna P.J., Plum M.: Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof. J. Differential Equations 195(1), 243–269 (2003)
    Breuer B., Horák J., McKenna P.J., Plum M.: A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam. J. Differential Equations 224(1), 60–97 (2006)
    van den Berg, J.B., Deschênes, Andréa, Lessard, J.-P., Mireles James, J.D.: Stationary Coexistence of Hexagons and Rolls via Rigorous Computations. SIAM J. Appl. Dyn. Syst. 14(2), 942–979 (2015)
    van den Berg J.B., Mireles-James J.D., Lessard J.-P., Mischaikow K.: Rigorous numerics for symmetric connecting orbits: even homoclinics of the Gray-Scott equation. SIAM J. Math. Anal. 43(4), 1557–1594 (2011)
    Nakao M.T., Hashimoto K., Kobayashi K.: Verified numerical computation of solutions for the stationary Navier–Stokes equation in nonconvex polygonal domains. Hokkaido Math. J. 36(4), 777–799 (2007)
    Nakao M.T.: Numerical verification methods for solutions of ordinary and partial differential equations. Numer. Funct. Anal. Optim., 22(3-4), 321–356 (2001)
    Rump S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)
    Castelli R., Teismann H.: Rigorous numerics for NLS: bound states, spectra, and controllability. Physica D: Nonlinear Phenomena 334, 158–173 (2016)
    Castelli, R.: Rigorous computation of non-uniform patterns for the 2-dimensional Gray-Scott reaction-diffusion equation. Acta Appl. Math., (May 2017)
    Lessard J.-P.: Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright’s equation. J. Differential Equations 248(5), 992–1016 (2010)
    Kiss G., Lessard J.-P.: Computational fixed-point theory for differential delay equations with multiple time lags. J. Differential Equations 252(4), 3093–3115 (2012)
    Minamoto T., Nakao M.T.: A numerical verification method for a periodic solution of a delay differential equation. J. Comput. Appl. Math. 235, 870–878 (2010)
    Day S., Kalies W.D.: Rigorous computation of the global dynamics of integrodifference equations with smooth nonlinearities. SIAM J. Numer. Anal. 51(6), 2957–2983 (2013)
    Day, S., Junge, O., Mischaikow, K.: A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems. SIAM J. Appl. Dyn. Syst. 3(2), 117–160 (electronic) (2004)
    Mireles James, J.D., de la Llave, R.: Connecting orbits for compact infinite dimensional maps: computer assisted proofs of existence. SIAM J. Appl. Dyn. Syst. 15(2), 1268–1323 (2016)
    Arnold V.: Sur une propriété topologique des applications globalement canoniques de la mécanique classique. C. R. Acad. Sci. Paris 261, 3719–3722 (1965)
    Floer A.: Symplectic fixed points and holomorphic spheres. Comm. Math. Phys. 120(4), 575–611 (1989)
    Salamon D.: Morse theory, the Conley index and Floer homology. Bull. London Math. Soc. 22(2), 113–140 (1990)
    de la Llave R.: A smooth center manifold theorem which applies to some ill-posed partial differential equations with unbounded nonlinearities. J. Dynam. Differ. Equ. 21(3), 371–415 (2009)
    Craig W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differ. Equ. 10(8), 787–1003 (1985)
    Deift P., Tomei C., Tomei C., Tomei C.: Inverse scattering and the Boussinesq equation. Commun. Pure Appl. Math. 35(5), 567–628 (1982)
    Makhankov V.G.: Dynamics of classical solitons (in non-integrable systems). Physics Reports 35(1), 1–128 (1978)
    Zakharov, V.E.: On stochastization of one-dimensional chains of nonlinear oscillators. Sov. Phys - JETP 38(1) (1974).
    Whitham, G.B.: Linear and nonlinear waves. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics
    Zgliczynski P., Czechowski A.: Rigorous numerics for pdes with indefinite tail: existence of a periodic solution of the boussinesq equation with time-dependent forcing. Schedae Informaticae, 24, 143–158 (2015)
    de la Llave R., Figueras J.-L., Gameiro M., Lessard J.-P.: A framework for the numerical computation and a posteriori verification of invariant objects of evolution equations. SIAM J. Appl. Dyn. Syst. 16(2), 1070–1088 (2017)
    Gameiro M., Lessard J.-P.: A posteriori verification of invariant objects of evolution equations: periodic orbits in the Kuramoto-Sivashinsky PDE. SIAM J. Appl. Dyn. Syst. 16(1), 687–728 (2017)
    Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (electronic) (2007)
    van den Berg J.B., Lessard J.-P.: Rigorous numerics in dynamics. Not. Am. Math’ Soc 62(9), 1057–1061 (2015)
    Manoranjan V.S., Ortega T., Sanz-Serna J.M.: Soliton and antisoliton interactions in the “good” Boussinesq equation. J. Math. Phys. 29(9), 1964–1968 (1988)
    Crannell A.: The existence of many periodic non-travelling solutions to the Boussinesq equation. J. Differ. Equ. 126(2), 169–183 (1996)
    Hungria A., Lessard J.-P., Mireles-James J.D.: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comp. 85(299), 1427–1459 (2016)
    Rump, S.M.: INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pp 77–104. Kluwer Academic Publishers, Dordrecht, 1999. http://www.ti3.tu-harburg.de/rump .
    Castelli, R., Gameiro, M., Lessard, J.-P.: MATLAB codes to perform the computer-assisted proofs available at http://archimede.mat.ulaval.ca/jplessard/boussinesq/