Ver registro no DEDALUS
Exportar registro bibliográfico



Modeling the transmission and control of Zika in Brazil (2017)

  • Authors:
  • USP affiliated authors: OLIVA FILHO, SERGIO MUNIZ - IME
  • USP Schools: IME
  • DOI: 10.1038/s41598-017-07264-y
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso online ao documento

    Online accessDOI or search this record in
    Informações sobre o DOI: 10.1038/s41598-017-07264-y (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by
    Versões disponíveis em Acesso Aberto do: 10.1038/s41598-017-07264-y (Fonte: Unpaywall API)

    Título do periódico: Scientific Reports

    ISSN: 2045-2322

    • Melhor URL em Acesso Aberto:

    • Outras alternativas de URLs em Acesso Aberto:

        • Página do artigo
        • Evidência: oa journal (via doaj)
        • Licença: cc-by
        • Versão: publishedVersion
        • Tipo de hospedagem: publisher

        • Página do artigo
        • Evidência: oa repository (via pmcid lookup)
        • Licença:
        • Versão: publishedVersion
        • Tipo de hospedagem: repository

    Informações sobre o Citescore
  • Título: Scientific Reports

    ISSN: 2045-2322

    Citescore - 2017: 4.36

    SJR - 2017: 1.533

    SNIP - 2017: 1.245

  • Exemplares físicos disponíveis nas Bibliotecas da USP
    BibliotecaCód. de barrasNúm. de chamada
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      WANG, Liping; ZHAO, Hongyong; OLIVA, Sergio Muniz; ZHU, Huaiping. Modeling the transmission and control of Zika in Brazil. Scientific Reports, London, v. 7, p. 1-14, 2017. Disponível em: < > DOI: 10.1038/s41598-017-07264-y.
    • APA

      Wang, L., Zhao, H., Oliva, S. M., & Zhu, H. (2017). Modeling the transmission and control of Zika in Brazil. Scientific Reports, 7, 1-14. doi:10.1038/s41598-017-07264-y
    • NLM

      Wang L, Zhao H, Oliva SM, Zhu H. Modeling the transmission and control of Zika in Brazil [Internet]. Scientific Reports. 2017 ; 7 1-14.Available from:
    • Vancouver

      Wang L, Zhao H, Oliva SM, Zhu H. Modeling the transmission and control of Zika in Brazil [Internet]. Scientific Reports. 2017 ; 7 1-14.Available from:

    Referências citadas na obra
    Foy, B. D. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17, 880–882 (2011).
    Marcondes, C. B. & Ximenes, M. F. F. Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicina Tropical 49, 4–10 (2016).
    Bogoch, I. I. et al. Anticipating the international spread of Zika virus from Brazil. Lancet 387, 335–336 (2016).
    Hayes, E. B. Zika virus outside Africa. Emerging Infectious Diseases 15, 1347–1350 (2009).
    Schulerfaccini, L. Possible association between Zika virus infection and Microcephaly-Brazil, 2015. Mmwr Morbidity & Mortality Weekly Report 65, 1–4 (2016).
    Dick, G. W. A., Kitchen, S. F. & Haddow, A. J. Zika virus (I). Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene 46(5), 509–520 (1952).
    Duffy, M. R. et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. New England Journal of Medicine 360, 2536–2543 (2009).
    Hancock, W. T., Marfel, M. & Bel, M. Zika virus, French Polynesia, South Pacific, 2013. Emerging Infectious Diseases 20, 1085–1086 (2014).
    Campos, G. S., Bandeira, A. C. & Sardi, S. I. Zika virus outbreak, Bahia, Brazil. Emerging Infectious Diseases 21, 1885–1886 (2015).
    Roa, M. Zika virus outbreak: reproductive health and rights in Latin America. Lancet 387, 843–843 (2016).
    Mccarthy, M. US health officials investigate sexually transmitted Zika virus infections. Bmj 352 (2015).
    World Health Organization (WHO), WHO statement on the first meeting of the International Health Regulations (2005) Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations, February 1, 2016. (Accessed on February 26, 2016).
    Zanluca, C. et al. First report of autochthonous transmission of Zika virus in Brazil. Memórias do Instituto Oswaldo Cruz 110, 569–572 (2015).
    Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annual Review of Entomology 45, 371–391 (2000).
    Qi, R. F., Zhang, L. & Chi, C. W. Biological characteristics of dengue virus and potential targets for drug design. Acta Biochimica Et Biophysica Sinica 40, 91–101 (2008).
    Kirsten, H., Peter, H., Peter, S., Arndt, T. & Werren, J. H. How many species are infected with Wolbachia?-A statistical analysis of current data. Fems Microbiology Letters 281, 215–220 (2008).
    Dutra, H. L. et al. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host & Microbe 19, 1–4 (2016).
    Yakob, L. & Walker, T. Zika virus outbreak in the Americas: the need for novel mosquito control methods. Lancet Global Health 4, e148–e149 (2016).
    Hoffmann, A. A. et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476(7361), 454–457 (2011).
    Aliota, M. T., Peinado, S. A., Velez, I. D. & Osorio, J. E. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Plos Neglected Tropical Diseases 6 (2016).
    Mehta, N. Brazil releases Wolbachia infected mosquitoes to fight dengue. T8Ok070nJy1O4zlW5C93aP/Brazil-releases-Wolbachia-infected-mosquitoes-to-fight-dengu.html. (Accessed 26 Sepetemer 2014).
    Laven, H. Crossing experiments with Culex strains. Evolution 5, 370–375 (1951).
    Yen, J. H. & Barr, A. R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232, 657–658 (1971).
    O’Neill, S. L., Giordano, R., Colbert, A. M., Karr, T. L. & Robertson, H. M. 16SrRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proceedings of the National Academy of Sciences of the United States of America 89, 2699–2702 (1992).
    Watson, G. S. On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution 13, 568–570 (1959).
    Ndii, M. Z. Modelling the introduction of Wolbachia into Aedes aegypti mosquitoes to reduce dengue transmission. Anziam Journal 53, 213–227 (2012).
    Zhang, X., Tang, S. & Cheke, R. A. Birth-pulse models of Wolbachia-induced cytoplasmic incompatibility in mosquitoes for dengue virus control. Nonlinear Analysis: Real World Applications 22, 236–258 (2015).
    Kucharski, A. J. et al. Transmission dynamics of Zika virus in island populations: A modelling analysis of the 2013–14 French Polynesia outbreak. Plos Neglected Tropical Diseases 10(5), e0004726 (2016).
    Funk, S. et al. Comparative analysis of dengue and Zika outbreaks reveals differences by setting and virus. PLoS neglected tropical diseases 10(12), e0005173 (2016).
    Gao, D. et al. Prevention and control of Zika fever as a mosquito-borne and sexually transmitted disease. Scientific Reports 6 (2016).
    Majumder, M. S. et al. Utilizing nontraditional data sources for near real-time estimation of transmission dynamics during the 2015–2016 Colombian Zika virus disease outbreak. Jmir Public Health & Surveillance 2 (2016).
    Nishiura, H. et al. A theoretical estimate of the risk of microcephaly during pregnancy with Zika virus infection. Epidemics 15, 66–70 (2016).
    World Health Organization, Zika cases from the World Health Organization. (Accessed 5 February 2016).
    Brazil Ministry of Health, Zika cases from the Brazil Ministry of Health. (Accessed 21 November 2015).
    World Health Organization, Case definitions of Zika virus. content& view=article& id=11117 (Accessed 1 April 2016).
    Andraud, M., Hens, N., Marais, C. & Beutels, P. Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. Plos One 7, 3161–3164 (2011).
    Turley, A. P., Moreira, L. A., O’Neill, S. L. & Mcgraw, E. A. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. Plos Neglected Tropical Diseases 3, 935–936 (2009).
    Lc, D. C. M. et al. Modeling the dynamic transmission of dengue fever: investigating disease persistence. Plos Neglected Tropical Diseases 5, e942–e942 (2011).
    Briggs, G. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. Plos Pathogens 6, e1000833–e1000833 (2010).
    Chikaki, E. & Ishikawa, H. A dengue transmission model in Thailand considering sequential infections with all four serotypes. Journal of Infection in Developing Countries 3, 711–722 (2009).
    Bearcroft, W. G. C. Zika virus infection experimentally induced in a human volunteer. Transactions of the Royal Society of Tropical Medicine & Hygiene 50, 442–448 (1956).
    Chowell, G. et al. Estimation of the reproduction number of dengue fever from spatial epidemic data. Mathematical Biosciences 208, 571–589 (2007).
    Gourinat, A. C., O’Connor, O., Calvez, E., Goarant, C. & Dupontrouzeyrol, M. Detection of Zika virus in urine. Emerging Infectious Diseases 21, 84–86 (2015).
    Musso, D. et al. Potential sexual transmission of Zika virus. Emerging Infectious Diseases 21, 359–361 (2015).
    Walker, T. et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476, 450–453 (2011).
    Yang, H. M., Macoris, M. L. G., Galvani, K. C., Andrighetti, M. T. M. & Wanderley, D. M. V. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiology & Infection 137, 1188–1202 (2009).
    Yeap, H. L. et al. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187, 583–595 (2011).
    Eshita, Y. et al. Vector competence of Japanese mosquitoes for dengue and West Nile viruses. Pesticide Chemistry 217–225 (2007).
    Wilder Smith, A., Foo, W., Earnest, A., Sremulanathan, S. & Paton, N. I. Seroepidemiology of dengue in the adult population of Singapore. Tropical Medicine & International Health Tm & Ih 9, 305–308 (2004).
    Yebakima, A. et al. Genetic heterogeneity of the dengue vector Aedes aegypti in Martinique. Tropical Medicine & International Health 9, 582–587 (2004).
    Manore, C. A., Hickmann, K. S., Xu, S., Wearing, H. J. & Hyman, J. M. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Journal of Theoretical Biology 356, 174–191 (2014).
    Pandey, A., Mubayi, A. & Medlock, J. Comparing vector-host and sir models for dengue transmission. Mathematical Biosciences 246, 252–259 (2013).
    Shi, B., Tan, Q., Zhou, X. N. & Liu, J. Mining geographic variations of Plasmodium vivax for active surveillance: a case study in China. Malaria Journal 14, 1–14 (2015).
    O’Connor, L. et al. Open release of male mosquitoes infected with a Wolbachia biopesticide: Field performance and infection containment. Plos Negl Trop Dis 6, e1797 (2012).
    Sinkins, S. P. Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochemistry & Molecular Biology 34, 723–729 (2004).
    Xi, Z., Khoo, C. C. & Dobson, S. L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310, 326–328 (2005).
    Keeling, M. J., Jiggins, F. M. & Read, J. M. The invasion and coexistence of competing Wolbachia strains. Heredity  91, 382–388 (2003).